

ADAM-3016 Strain Gauge Input Module

User's Manual

ADAM and the ADAM logo are trademarks of Advantech

Part no. 2000016000 1st Edition Printed in Taiwan August 1997

Introduction

wide temperature variation.

ADAM-3016 is a DIN rail-mounted strain gauge input signal conditioning module with 1000 $\rm V_{\rm DC}$ 3-way isolation between input, output and power. The switch configurable input and output offers flexible, wide ranging capability for strain gauge.

DC converter status and 3 VR (ZERO, SPAN, EXCI) to calibrate input/output range and excitation voltage.

The ADAM-3016 features three-way isolation. The power supply that drives the

ADAM-3016 is equipped with a power LED to monitor the line power and a DC-to-

The ADAM-3016 features three-way isolation. The power supply that drives the module's input circuitry and output circuitry is internally isolated, enabling ADAM-3016 to offer true channel-to-channel isolation.

ADAM-3016's input bandwidth is typically 2.4 kHz. The ADAM-3016 is powered by a single +24V_{DC} input. Power can be easily connected from the adjacent modules, making the wiring simple and easy to maintain. The ADAM-3016 can be mounted on a DIN rail and operate in environments with high humidity and

Features

- 1000 V_{DC} (fully-isolated)
- Easy input/output range configuration
- Flexible DIN-rail mounting
- Low power consumption:
 - £ 1.85 W (voltage output)
 - £ 2.15 W (current output)
- −10° to 70° C operating temperature range
- Operates from a single +24 V_{pc} input

Specifications

Voltage specifications

- Electrical input: ± 10 mV, ± 20 mV, ± 30 mV, ±50 mV, ±100 mV
- \bullet Excitation voltage: 1 ~ 10 V_{DC} (60 mA max) (factory default 10 V)

Output

- Voltage output
 Bipolar: ±5 V, ±10 V
 Unipolar: 0 ~ 10 V
 - Unipolar: 0 ~ 10 V Impedance: < 50 w
- Current: 0 ~ 20 mA

Current: 0 ~ 20 mA Current load resistor: 0 ~ 500 w (source)

Specifications

General

- ullet Three-way isolation: 1000 $V_{_{DC}}$
- Accuracy: ±0.1% of full range
- Bandwidth: 2.4 kHz (typical)
- Stability (temperature drift): 150 ppm (typical)
- Isolation mode rejection: >100 dB @ 50 Hz/60 Hz
- Operation temperature range: -10° to 70° C

Power

- Range: 24 V_{DC} ±10%
- Consumption: £ 1.85 W (voltage output) £ 2.15 W (current output)

Ordering Information

- ADAM-3016: Isolated strain gauge signal conditioning module
- ADAM-3920: 20-pin wiring adapter
- ADAM-3937: 37-pin wiring adapter
- ADAM-4350: Intelligent calibrator
- PWR-242: Switching power supply for DIN rail mounting

Configuration

Figure 1 shows the terminal wiring of ADAM-3016. Positive power terminals 9 and 7 are internally connected, as are negative terminals 12 and 10. Power can be connected through the adjacent modules, making wiring much easier. ADAM-3016 uses single +24 $V_{\rm DC}\cdot$ Table 1 and table 2 show the switch positions to configure input and output range. The I/O configuration switches are located inside the module. To reach the switches, you need to remove the DIN-rail bracket by sliding it down.

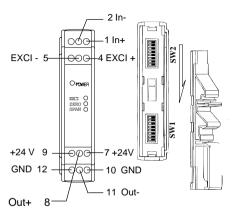


Figure 1: Terminal wiring diagram

Input range setting (SW2)

Input Range (SW2)											
Range	1	2	3	4	5						
-10 mV	n										
–20 mV		n									
-30 mV			n								
–50 mV				n							
-100 mV					n						

■: ON *Table 1: Input range setting (SW2)*

Output range setting (SW1)

Output Range (SW1)									
	Range	1	2	3	4	5	6	7	8
*	±5 V	n		n					n
	±10 V	n		n					
	0 ~ 10 V	n		n				n	
	0 ~ 20 mA		n		n			n	

Table 2: Output range setting (SWI) * Factory default setting

Calibration for input/output

 Disconnect power and set the input range (SW2) and output range (SW1) to the desired setting, then apply the power.

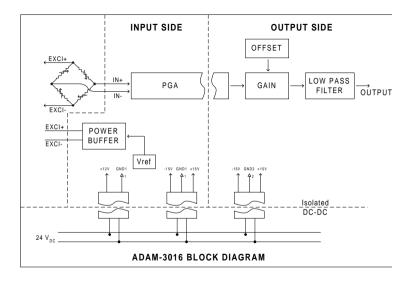
```
**Define the following variables for calibration use.
--Low cali input = Min input + Full Scalar Input * 0.05:
```

```
--High_cali_input = Max_input - Full Scalar Input * 0.05;
```

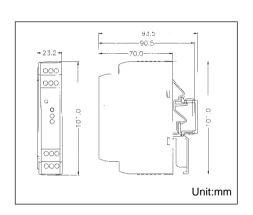
- --Low_cali_output = Min_output + Full Scalar Output * 0.05;
- --High_cali_output = Max_output Full Scalar Output * 0.05;
- 2. Input the Low_cali_input signal;read the Low_real_output signal;
- 3. Input the High_cali_input signal;read the High_real_output signal;
- Adjust variable resistor of SPAN and repeat step 2 & 3 to meet the following condition

(High_cali_output + Low_cali_output) = (Low_real_output + High_real_output)----eq1

Adjust variable resistor of ZERO and repeat step 2 & 3 to meet the following condition


Low_real_output = Low_cali_output----eq2

High_real_output = High_cali_output----eq3


If eq2, eq3 fail to meet your requirements, repeat step 4,5 until success in step 5

Calibration for excitation voltage

- Disconnect excitation voltage from gauge (for safety)
 Adjust variable resistor of EXCI according to your needs
- 3. Disconnect nower and apply excitation voltage to gauge
- Disconnect power and apply excitation voltage to gauge, then apply the power.
- 4. Finely tune excitation voltage according to your needs as in step 2

Dimensions

