
ADAM 5510 Series
PC-based Programmable Controller

User's Manual

ADAM 5510 Series
PC-based Programmable Controller

 User’s Manual

Copyright Notice

This document is copyrighted, 1997, by Advantech Co., Ltd. All rights are
reserved. Advantech Co., Ltd., reserves the right to make improvements to the
products described in this manual at any time without notice.
No part of this manual may be reproduced, copied, translated or transmitted in
any form or by any means without the prior written permission of Advantech Co.,
Ltd. Information provided in this manual is intended to be accurate and reliable.
However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any
infringements upon the rights of third parties, which may result from its use.

Acknowledgments

ADAM is a trademark of Advantech Co., Ltd.
IBM and PC are trademarks of International Business
Machines Corporation.

Second Edition
March 2005

Table of Contents

Chapter 1 System Overview.……..................…..................…….. 1-1

1.1 Introduction…................................….........….…………. 1-2
1.2 Features….........................…….............…....…….. 1-2
1.3 ADAM-5510 Series Controllers Specification………….……...1-6

Chapter 2 Installation Guidelines..................….................…....... 2-1

2.1 System Requirements…………………………………....…....... 2-2
2.2 Hardware Installation …………….....................……............... 2-4
2.3 System Wiring and Connections.....................……............... 2-21
2.4 Software Installation….................................………............... 2-26

Chapter 3 I/O Modules ..…............. 3-1

3.1 System Hardware Configuration……………………...…......... 3-2
3.2 Install Utility on Host PC………….………………..…............... 3-2
3.3 ADAM-5510 Series Utility Overview..………………….…….... 3-4
3.4 Example of I/O Module Configuration …...…………….......... 3-8
3.5 Initialize Drive D to Default Settings……………….....…........ 3-15
3.6 Configure IP Address and HTTP/FTP User/Password……... 3-19
3.7 Download and Run Application Program Automatically

After Boot Up …………………………………………………..... 3-22
3.8 Backup Drive D as Image File ……………………………....... 3-24
3.9 Restore Drive D from Image File …........................…........... 3-28

Chapter 4 Guidelines for Network Functions..................…......... 4-1

4.1 FTP Server..….......... 4-6
4.2 HTTP Server..….......... 4-9
4.3 Send Mail ………………………………........................….......... 4-24
4.4 Modbus/TCP Server ………………................…...................... 4-30
4.5 Modbus/TCP Client………………….................……......... 4-36
4.6 Modbus/RTU Slave …………………………………......……..... 4-40

4.7 Modbus/RTU Master ………………………..................……..... 4-46
4.8 TCP Server …………….……………………..................……..... 4-49
4.9 TCP Client ………………………………..…..................……..... 4-59
4.10 UDP Connection …….……………………..................……..... 4-65
4.11 FTP Client ………………….………………..................……..... 4-75

Chapter 5 Programming and Function Library ..…..................... 5-1

5.1 Introduction ………………………..............................…........... 5-2
5.2 Category of Function Libraries ..………................................. 5-6
5.3 Library Index …………………... 5-7
5.4 Function Library Description ... 5-15

Chapter 6 Sockets Utility…..................... 6-1

Chapter 7 HTTP and FTP Server Application......…..................... 7-1

Appendix A COM Port Register Structure…......... A-1

Appendix B Data Formats and I/O Ranges…............ B-1

Appendix C RS-485 Network ……................................…............. C-1

Appendix D Grounding Reference…..................... D-1

 1
System Overview

Chapter 1 System Overview

1-2 ADAM-5510 Series User’s Manual

1.1 Introduction

Standalone Data Acquisition and Control System

As the growth of PC-based technology, Advantech PC-based
Programmable Controllers have been widely applied in variety of
industrial automation applications. Enhanced from the original
ADAM-5510 controller, the ADAM-5510 Series Controller is a new
series of stand-alone programmable controller features high
memory capacity, user-friendly configuration tool, rich serial
communication interfaces, and also Ethernet port available on
specific models. Applying the ADAM-5510 Series Controller, the C
programmers would be able to handle any complex task easily.

The ADAM-5510 Series Controller includes four models as
following:

- ADAM-5510M 4-slot PC-based Programmable Controller
- ADAM-5510E 8-slot PC-based Programmable Controller
- ADAM-5510/TCP 4-slot Ethernet-enabled Programmable

Controller
- ADAM-5510E/TCP 8-slot Ethernet-enabled Programmable

Controller

Note: the model number ADAM-5510 is not included in the

ADAM-5510 Series Controller. It’s because all above
ADAM-5510 Series Controller share the same hardware
specifications and software function libraries. However, the
model of ADAM-5510 has it’s own hardware specification
and software library.

1.2 Features

The system of ADAM-5510 Series Controller consists of two major
components: the main unit and I/O modules. The main unit
includes a CPU card, a power regulator, a 4-slot or 8-slot base,
three serial communication ports and one programming port.
Some models also embed one Ethernet port. They has the
following major features:

Chapter 1 System Overview

ADAM-5510 Series User’s Manual 1-3

1.2.1 Control flexibility with C programming

The ADAM-5510 Series Controller is a compact PC in its own
right and includes an 80188 CPU and a built-in ROM-DOS
operating system. It can be used in a way similar to how one uses
an x86 PC in the office. Programmers in C can write and compile
applications in Borland C 3.0 and download to the ADAM-5510
Series Controller. Given the prevalence of C language
programming tools, this is a distinct advantage for many users

and can result in a very short learning curve and very modest
training expense requirements.

1.2.2 RS-232/485 communication ability

The ADAM-5510 Series Controller has four serial communication
ports, giving it excellent communication abilities. This facilitates its
ability to control networked devices. The communication ports of
different models are listed as below table.

 ADAM-5510M ADAM-5510E ADAM-5510/TCP ADAM-5510E/TCP
COM1 RS-232 RS-232/485 RS-232 RS-232/485
COM2 RS-485 RS-485 RS-485 RS-485
COM3 RS-232 RS-232 RS-232 RS-232
COM4 RS-232/485 RS-232/485 RS-232/485 RS-232/485

Table 1-1 Communication Ports of ADAM-5510 Series Controller

For example, ADAM-5510M COM1 is a dedicated RS-232 port,
COM2 is a dedicated RS-485 port, and COM4 is a RS-232/485
selectable port. These three ports allowed the ADAM-5510M to
satisfy diverse communication and integration demands. COM3 is
a spare programming port for downloading or transferring
executable programs from a host PC. It can also be used as an
RS-232 communication port. Please refer to following figure and
check the location of COM ports.

Chapter 1 System Overview

1-4 ADAM-5510 Series User’s Manual

 Figure 1-1 ADAM-5510M Communication Ports

1.2.3 Versatile Protocols of Communication Function
Libraries

The communication protocol of the ADAM-5510 is user-defined
and there are library functions of MODBUS/RTU protocol and
MODBUS/TCP protocol (ADAM-5510/TCP and ADAM-

5510E/TCP only), available for users. Of course, users can
implement ASCII-based command and response protocol by
themselves. The function libraries include following protocols.

- MODBUS/RTU Master Function for connecting to remote I/O

modules via RS-485 port
- MODBUS/RTU Slave Function for connecting to HMI/SCADA

software via RS-485 port
- MODBUS/TCP Server Function for connecting to HMI/SCADA

software via Ethernet port (ADAM-5510/TCP and ADAM-
5510E/TCP only)

- MODBUS/TCP Client Function for connecting to Ethernet-
enabled remote I/O modules via Ethernet port (ADAM-
5510/TCP and ADAM-5510E/TCP only)

1.2.4 Complete set of I/O modules for total solutions

The ADAM-5510 Series Controller uses a convenient backplane
system for supporting versatile I/O modules. Advantech's
complete line of ADAM-5000 I/O modules integrates with the
ADAM-5510 Series Controller to support your applications.
Following table is the I/O module support list we provided for
user’s choice.

Chapter 1 System Overview

ADAM-5510 Series User’s Manual 1-5

Module Name Specification Reference

ADAM-5013 3-ch. RTD input Isolated

ADAM-5017 8-ch. AI Isolated

ADAM-5017H 8-ch. High speed AI Isolated

ADAM-5018 7-ch. Thermocouple input Isolated

 Analog I/O

ADAM-5024 4-ch. AO Isolated

ADAM-5050 7-ch. D I/O Non-isolated

ADAM-5051 16-ch. DI Non-isolated

ADAM-5051D 16-ch. DI w/LED Non-isolated

ADAM-5051S 16-ch. Isolated DI w/LED Isolated

ADAM-5052 8-ch. DI Isolated

ADAM-5055S 16-ch. Isolated DI/O w/LED Isolated

ADAM-5056 16-ch. DO Non-isolated

ADAM-5056D 16-ch. DO w/LED Non-isolated

ADAM-5056S 16-ch. Isolated DO w/LED Isolated

Digital I/O

ADAM-5056SO 16-ch. Iso. DO w/LED (source) Isolated

ADAM-5060 6-ch. Relay output Isolated

ADAM-5068 8-ch. Relay output Isolated Relay Output

ADAM-5069 8-ch. Power Relay output Isolated

Counter/Frequency ADAM-5080 4-ch. Counter/Frequency Isolated

 Serial I/O ADAM-5090 4-port RS232 Non-isolated

 Table 1-2 I/O Module Support List

- A full range of digital modules support +10 to +30VDC I/O and

relay outputs.
- A set of analog modules provide up to 16-bit resolution and

programmable input and output (including bipolar) signal
ranges. For details, refer to ADAM-5000 Series I/O Module
User’s Manual.

- A complete set of C language I/O subroutines are included in
the ADAM-5510 Series Controller function library to reduce
programming efforts. Users can easily call these subroutines
to execute the ADAM-5510 Series Controller’s I/O functions
while programming in Borland C 3.0 languages. For a detailed
description, refer to Chapter 5: Programming and Function
Library.

Chapter 1 System Overview

1-6 ADAM-5510 Series User’s Manual

1.2.5 Built-in ROM and RAM disk for programming

The ADAM-5510 Series Controller has built-in Flash Memory and
SRAM for file downloading, system operation and data storage. It
provides 1MB file system, 960 KB free for users to download
programs. There are also 640KB SRAM to provide the memory
needed for efficient application operation and file transfer.
Moreover, users are allowed to decide the battery backup memory
size up to 384KB in the SRAM.

1.2.6 Built-in real-time clock and watchdog timer

The micro-controller also includes a real-time clock and watchdog
timer. The real-time clock records events while they occur. The
watchdog timer is designed to automatically reset the
microprocessor if the system fails. This feature greatly reduces
the level of maintenance required and makes the ADAM-5510
Series Controller ideal for use in applications which required a
high level of system stability.

1.2.7 Built-in Ethernet Port (ADAM-5510/TCP and ADAM-
5510E/TCP only)

The Ethernet port on ADAM-5510/TCP and ADAM-5510E/TCP
can perform powerful function as following.

- FTP Server and Client Function
- Web Server Function
- Send Mail Function
- TCP and UDP Connection by Sockets

Chapter 1 System Overview

ADAM-5510 Series User’s Manual 1-7

1.3 ADAM-5510 Series Controllers Specification

1.3.1 System

• CPU: 80188 microprocessor
• Memory:

1.5MB flash memory:
- 256KB system Disk (Drive C: Read Only)
- 256KB flash memory (Accessed by Function LIB)

- 1024KB file system, 960KB for user applications (Drive
D: Read/Write)

640KB SRAM
- up to 384KB with battery backup (Accessed by

Function LIB)
• Operating System: ROM-DOS (MS-DOS 6.22 Compatible)
• Real-time Clock: yes
• Watchdog Timer: yes
• COM1: RS-232 (ADAM-5510M, ADAM-5510/TCP)

RS-232/485 (ADAM-5510E, ADAM-5510E/TCP)
• COM2: RS-485
• Programming Port/COM3: TX, RX, GND (RS-232 Interface)
• COM 4: RS-232/485
• I/O Capacity: 4 Slots (ADAM-5510M, ADAM-5510/TCP)

8 Slots (ADAM-5510E, ADAM-5510E/TCP)

1.3.2.1 RS-232 interface (COM1) for ADAM-5510M and ADAM-

5510/TCP
• Signals: TxD, RxD, RTS, CTS, DTR, DSR, DCD, RI, GND
• Mode: Asynchronous full duplex, point to point
• Connector: DB-9 pin
• Transmission speed: Up to 115.2 Kbps

• Max transmission distance: 50 feet (15.2 m)

1.3.2.2 RS-232/485 interface (COM1) for ADAM-5510E and ADAM-

5510E/TCP
• RS-232/485 Mode Selectable (Select by jumper setting, refer to

Figure 1-2)
• RS-232 Mode: Asynchronous full duplex, point to point

Signals: TxD, RxD, RTS, CTS, DTR, DSR, DCD, RI, GND

Chapter 1 System Overview

1-8 ADAM-5510 Series User’s Manual

• RS-485 Mode: Half duplex, multi-drop

Signal: DATA+, DATA-
• Connector: DB-9 pin
• Transmission speed: Up to 115.2 Kbps
• Max transmission distance:

RS-232: 50 feet (15.2 m)
RS-485: 4,000 feet (1220 m)

1.3.3 RS-485 interface (COM2)
• Signals: DATA+, DATA-
• Mode: Half duplex, multi-drop

• Connector: Screw terminal
• Transmission speed: Up to 115.2 Kbps
• Max transmission distance: 4000 feet (1220 m)

1.3.4 RS-232 programming port (COM3)
• Signals: Tx, Rx, GND
• Mode: Asynchronous, point to point
• Connector: DB-9 pin
• Transmission speed: Up to 115.2 Kbps
• Max transmission distance: 50 feet (15.2 m)

1.3.5 RS-232/485 interface (COM4)
• RS-232/485 Mode Selectable (Select by jumper setting, refer to

Figure 1-2)
• RS-232 Mode: Asynchronous full duplex, point to point

Signals: TxD, RxD, RTS, CTS, DTR, DSR, DCD, RI, GND
• RS-485 Mode: Half duplex, multi-drop

Signals: DATA+, DATA-
• Connector: DB-9 pin
• Transmission speed: Up to 115.2 Kbps
• Max transmission distance:

RS-232: 50 feet (15.2 m)
RS-485: 4000 feet (1220 m)

1.3.6 Isolation
• Power: 3000 VDC
• Input/Output: 3000 VDC
• Communication: 2500 VDC (COM2 only)

Chapter 1 System Overview

ADAM-5510 Series User’s Manual 1-9

1.3.7 Power
• Unregulated +10 to +30 VDC
• Protected against power reversal
• Power consumption: 2.0 W

1.3.8 Mechanical
• Case: ABS with captive mounting hardware
• Plug-in screw terminal block:

Accepts 0.5 mm2 to 2.5 mm2, 1 - #12 or 2 - #14 to #22 AWG

1.3.9 Environment
• Operating temperature: -10° to 70° C (14° to 158° F)
• Storage temperature: -25° to 85° C (-13° to 185° F)

• Humidity: 5 to 95 %, non-condensing
• Atmosphere: No corrosive gases

Note: Equipment will operate below 30% humidity. However, static

electricity problems occur much more frequently at lower
humidity levels. Make sure you take adequate precautions when
you touch the equipment. Consider using ground straps, anti-
static floor coverings, etc. if you use the equipment in low
humidity environments.

1.3.10 Dimensions

The following diagrams show the dimensions of the system unit and
an I/O unit. All dimensions are in millimeters.

Figure 1-2 ADAM-5510M and ADAM-5510/TCP Dimension

Chapter 1 System Overview

1-10 ADAM-5510 Series User’s Manual

Figure 1-3 ADAM-5510E and ADAM-5510E/TCP Dimension

1.3.11 LED Status

ADAM-5510M and ADAM-5510E:

There are four LEDs on the ADAM-5510M and ADAM-5510E front
panel. The LED's indicate ADAM-5510M and ADAM-5510E's
operating status, as explained below:

(1) PWR: power indicator. This LED is on whenever the ADAM-5510M

or ADAM-5510E is powered on.
(2) RUN: program execution indicator. This LED is regularly blinks

whenever the ADAM-5510M or ADAM-5510E is executing a
program.

(3) COMM: communication indicator. This LED blinks whenever the
host PC and the ADAM-5510M or ADAM-5510E is
communicating. Please notice: if the host COM port is
connected to the ADAM-5510M or ADAM-5510E's COM1,
this LED will normally be off. On the other hand, if the host
COM port is connected to the ADAM-5510M and ADAM-
5510E's COM2, this LED will normally be on.

(4) BATT: battery status indicator. This LED will be on whenever the
SRAM backup battery is low.

ADAM-5510/TCP and ADAM-5510E/TCP:

There are eight LEDs on the ADAM-5510/TCP and ADAM-
5510E/TCP front panel. The LED's indicate operating status, as
explained below:

Chapter 1 System Overview

ADAM-5510 Series User’s Manual 1-11

(1) PWR: power indicator. This LED is on whenever the ADAM-

5510/TCP or ADAM-5510E/TCP is powered on.
(2) RUN: program execution indicator. This LED is regularly blinks

whenever the ADAM-5510/TCP or ADAM-5510E/TCP is
executing a program.

(3) COMM: communication indicator. This LED blinks whenever the
host PC and the ADAM-5510/TCP or ADAM-5510E/TCP
is communicating. Please notice: if the host COM port is
connected to the ADAM-5510/TCP or ADAM-5510E/TCP
COM1, this LED will normally be off. On the other hand, if
the host COM port is connected to the ADAM-5510/TCP or
ADAM-5510E/TCP's COM2, this LED will normally be on.

(4) BATT: battery status indicator. This LED will be on whenever the

SRAM backup battery is low.
(5) Speed: This LED is on when the Ethernet communication speed is

100 Mbps.
(6) Link: This LED is normal on whenever the Green indicator. This

LED is on when the ADAM-5510/TCP or ADAM-
5510E/TCP’s Ethernet wiring is connected.

(7) TX: This LED blinks whenever the ADAM-5510/TCP or ADAM-
5510E/TCP transmitting data to Ethernet.

(8) RX: This LED blinks whenever the ADAM-5510/TCP or ADAM-
5510E/TCP receiving data from Ethernet.

2
 Installation Guidelines

Chapter 2 Installation Guidelines

2-2 ADAM-5510 Series User’s Manual

This chapter explains how to install an ADAM-5510 Series Controllers.
A quick hookup schemes including both 4-slot and 8-slot models are
provided that let you easily configure your system before
implementing it into your application.

2.1 System Requirements

Before you start installing the ADAM-5510 Series Controller, make
sure the system requirements are met:

2.1.1 Host Computer Requirements

1. IBM PC compatible computer with 486 CPU (Pentium is
recommended).

2. Microsoft 95/98/NT 4.0 (SP3 or SP4) or higher versions.
3. DOS version 3.31 or higher.
3. Borland C 3.0 for DOS
4. At least 32 MB RAM.
5. 20 MB of hard disk space available
6. VGA color monitor.
7. 2x or higher speed CD-ROM.
8. Mouse or other pointing devices.
9. At least one standard RS-232 port (e.g. COM1, COM2).
10. One RS-485 card or RS-232 to RS-485 converter (e. g.

ADAM-4520) for system communication.

2.1.2 ADAM-5510M Requirements

1. One ADAM-5510 Series Controller main unit.
2. One ADAM-5510 Series Controller Startup Manual
3. One core clamp for power supply connection.
4. One ADAM Products Utilities CD.
5. Power supply for ADAM-5510 Series Controller

(+10 to +30 VDC unregulated)
6. One RS-232 straight through DB-9 cable

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-3

2.1.3 I/O Module Requirements

At least one I/O module is needed to use the system. A variety of I/O
modules are available to meet different application requirements.
Table 2-1 gives a current listing of these modules for your reference.

Module Name Specification Reference

ADAM-5013 3-ch. RTD input Isolated

ADAM-5017 8-ch. AI Isolated

ADAM-5017H 8-ch. High speed AI Isolated

ADAM-5018 7-ch. Thermocouple input Isolated

 Analog I/O

ADAM-5024 4-ch. AO Isolated

ADAM-5050 7-ch. D I/O Non-isolated

ADAM-5051 16-ch. DI Non-isolated

ADAM-5051D 16-ch. DI W/ LED Non-isolated

ADAM-5052 8-ch. DI Isolated

ADAM-5056 16-ch. DO Non-isolated

Digital I/O

ADAM-5056D 16-ch. DO W/LED Non-isolated

ADAM-5060 6-ch. Relay output Isolated

ADAM-5068 8-ch. Relay output Isolated

Relay Output

ADAM-5069 8-ch. Power Relay output Isolated

Counter/FrequencyADAM-5080 4-ch. Counter/Frequency Isolated

 Serial I/O ADAM-5090 4-port RS232 Non-isolated

Table 2-1 I/O Module Support List

Chapter 2 Installation Guidelines

2-4 ADAM-5510 Series User’s Manual

2.2 Hardware Installation

2.2.1 Selecting I/O Module

To organize an ADAM-5510 Series Controller data acquisition &
control system, you need to select I/O modules to interface the main
unit with field devices or processes that you have previously
determined. There are several things should be considered when you
select the I/O modules.

What type of I/O signal is applied in your system?
How many I/O is required to your system?
How will you place the controller for concentrate the I/O points of
an entire process?
What is the required voltage range for each I/O module?
What isolation environment is required for each I/O module?
What are the noise and distance limitations for each I/O module?

Refer to table 2-2 as I/O module selection guidelines

Choose this type of

I/O module:
For these types of field devices

or operations (examples): Explanation:

Discrete input
module and block
I/O module

Selector switches, pushbuttons,
photoelectric eyes, limit switches,
circuit breakers, proximity
switches, level switches, motor
starter contacts, relay contacts,
thumbwheel switches

Input modules sense ON/OFF
or OPENED/CLOSED signals.
Discrete signals can be either
ac or dc.

Discrete output
module and block
I/O module

Alarms, control relays, fans, lights,
horns, valves, motor starters,
solenoids

Output module signals
interface with ON/OFF or
OPENED/CLOSED devices.
Discrete signals can be either
AC or DC.

Analog input module

Thermocouple signals, RTD
signals, temperature transducers,
pressure transducers, load cell
transducers, humidity transducers,
flow transducers, potentiometers.

Convert continuous analog
signals into input values for
ADAM-5510M

Analog output
module

Analog valves, actuators, chart
recorders, electric motor drives,
analog meters

Interpret ADAM-5510M output
to analog signals (generally
through transducers) for field
devices.

Table 2-2 I/O Selection Guidelines

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-5

Advantech provides 19 types of ADAM-5000 I/O modules for various
applications so far. The Figure 2-1 and table 2-3 will help you to select
the ADAM-5000 I/O modules quickly and easily.

Figure 2-1 ADAM-5000 I/O Module Selection Chart

Chapter 2 Installation Guidelines

2-6 ADAM-5510 Series User’s Manual

Module ADAM-5013 ADAM-5017 ADAM-5017H ADAM-5018 ADAM-5024

Resolution 16 bit 16 bit 12 bit 16 bit -
Input
Channel 3 8 8 7 -

Sampling
Rate 10 10 8K 10 -

Voltage
Input -

±150 mV ±500
mV ±1 V ±5 V

±10 V

±250 mV ±500
mV ±1 V ±5 V

±10 V

±15 mV ±50 mV
±100 mV ±500

mV ±1 V ±2.5 V
-

Current
Input - ±20 mA* ±20 mA* ±20 mA* -

Analog
Input

Direct
Sensor
Input

Pt or Ni RTD - - J, K, T, E, R, S,
B -

Resolution - - - - 12 bit
Voltage
Output - - - - 0~10 V Analog

Output Current
Output - - - - 0~20 mA

4~20 mA
Digital
Input
Channels

- - - - - Digital
Input and
Digital
Output

Digital
Output
Channels

- - - - -

Channels - - - - -
Input
Frequency - - - - - Count-er

(32-bit)
Mode - - - - -
Channels - - - - - COM-M Type - - - - -

Isolation 3000 VDC 3000 VDC 3000 VDC 3000 VDC 3000 VDC

Module ADAM-5050 ADAM-5051 ADAM-5051D ADAM-5051S

Resolution - - - -
Input Channel - - - -
Sampling Rate - - - -
Voltage Input - - - -
Current Input - - - -

Analog
Input

Direct Sensor
Input - - - -

Resolution - - - -
Voltage
Output - - - - Analog

Output
Current Output - - - -
Digital Input
Channels 16 16 W/LED 16 W/LED Digital Input

and Digital
Output Digital Output

Channels

16 DIO (bit-wise
selectabl-e) - - -

Channels - - - -
Input
Frequency - - - - Count-er

(32-bit)
Mode - - - -
Channels - - - - COM-M Type - - - -

Isolation - - - 2500 VDC

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-7

Module ADAM-5052 ADAM-5055S ADAM-5056 ADAM-5056D ADAM-5056S

/5056SO
Resolution - - - - -
Input
Channel - - - - -

Sampling
Rate - - - - -

Voltage
Input - - - - -

Current
Input - - - - -

Analog
Input

Direct
Sensor
Input

- - - - -

Resolution - - - - -
Voltage
Output - - - - - Analog

Output Current
Output - - - - -

Digital
Input
Channels

8 8 W/LED - - - Digital
Input
and
Digital
Output

Digital
Output
Channels

- 8 W/LED 16 16 W/LED 16 W/LED

Channels - - - - -
Input
Frequency - - - - - Count-er

(32-bit)
Mode - - - - -
Channels - - - - - COM-M Type - - - - -

Isolation 5000 VRMS 2500 VDC - - 2500 VDC

Module ADAM-5060 ADAM-5068 ADAM-5069 ADAM-5080 ADAM-5090

Resolution - - - -
Input
Channel -

- - -

Sampling
Rate -

- - -

Voltage
Input - - - -

Current
Input -

- - -

Analog
Input

Direct
Sensor
Input

- - - -

Resolution - - - -
Voltage
Output - - - -

Analog
Output

Current
Output

- - - -

Digital
Input
Channels

-

- - - Digital
Input and
Digital
Output

Digital
Output
Channels

6 relay (2 form
A/ 4 form C) 8 relay (8 form

A)
8 relay (8
form A) - -

Channels - - 4 -
Input
Frequency -

- 5000 Hz (max) -

Count-er
(32-
bit)

Mode - - Frequency,
Up/Down
Counter,
Bi-direction
Counter

-

Channels - - - 4 COM-M Type - - - RS-232
Isolation - - 1000 VRMS -

Table 2-3 I/O Selection Guidelines

Chapter 2 Installation Guidelines

2-8 ADAM-5510 Series User’s Manual

2.2.2 Selecting Power Supply Module

ADAM-5510 Series Controller works under unregulated power source
between +10 and +30 VDC. When you arrange different I/O modules
on ADAM-5510 Series Controller’s backplane, it may require
comparable power supply. Use the following steps as guidelines for
selecting a power supply for your ADAM-5510 Series control system.

Refer to table 2.4 to check the power consumption of ADAM-5510
Series Controller and each I/O module.

Main Units Description Power Consumption
ADAM-5000/485 Distributed Data Acquisition and Control System based on RS-485 1.0 W
ADAM-5000E Distributed Data Acquisition and Control System based on RS-485 4.0 W
ADAM-5000/TCP Distributed Data Acquisition and Control System based on Ethernet 5.0 W
ADAM-5510 PC-Based Programmable Controller (With Battery Backup) 1.0 W
ADAM-5510M Enhanced PC-Based Programmable Controller (With Battery Backup) 1.2 W
ADAM-5511 PC-Based Programmable Controller with Modbus 1.0 W
ADAM-5510E 8-clot PC-Based Programmable Controller 1.2W
ADAM-5510/TCP Ethernet-enabled PC-Based Programmable Controller 2.0W
ADAM-5510E/TCP 8-clot Ethernet-enabled PC-Based Programmable Controller 2.0W
I/O Modules Description Power Consumption
ADAM-5013 3-Channel RTD Input Module 1.1 W
ADAM-5017 8-Channel Analog Input Module (mV, mA or High Voltage) 1.25 W
ADAM-5017H 8-Channel High speed Analog Input Module (mV, mA or High Voltage) 2.2 W
ADAM-5018 7-Channel Thermocouple Input Module (mV, V, mA, Thermocopule) 0.63 W
ADAM-5024 4-Channel Analog Output Module (V, mA) 2.9 W
ADAM-5050 16-Channel Universal DIO 1.2 W
ADAM-5051 16-Channel Digital Input Module 0.53 W
ADAM-5051D 16-Channel Digital Input w/LED Module 0.84 W
ADAM-5056S 16-Channel Isolated Digital Input w/LED Module 0.8 W
ADAM-5056SO 16-Channel Digital Input w/LED Module 0.84 W
ADAM-5052 8-Channel Isolated DI 0.27W
ADAM-5055S 16-Channel Isolated DIO w/LED Module 0.68 W
ADAM-5056 16-Channel Digital Output Module 0.53 W
ADAM-5056D 16-Channel Digital Output w/LED Module 0.84 W
ADAM-5056S 16-Channel Isolated Digital Output w/LED Module 0.6 W
ADAM-5060 6-Channel Relay Output Module (2 of Form A, 4 of Form C) 1.8 W
ADAM-5068 8-Channel Relay Output Module (8 of Form A) 1.8 W
ADAM-5069 8-Channel Power Relay Output Module (8 of Form A) 2.2 W
ADAM-5080 4-Channel Counter/ Frequency Input Module 1.5 W
ADAM-5090 4-Port RS232 Module 0.6 W

Table 2.4 Power Consumption of ADAM-5000 series

Calculate the Summary of the whole system’s power consumption.
For example, there are following items in your system.

ADAM-5510M * 3 & ADAM-5024 * 2 & ADAM-5017 * 4 & ADAM-5068
* 2 & ADAM-5080 * 2

The power consumption is:
1.2W * 3 + 2.9W * 2 + 1.25 * 4 + 1.8W * 2 + 1.5W * 2 = 21W

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-9

Select a suitable power supply from Table 2.5 or other comparable
power resource for system operation.

Specification PWR-242 PWR-243 PWR-244

Input

Input Voltage 90~264 VAC 85~132 VAC
170~264VAC 100~240 VAC

Input Frequency 47~63 Hz 47~63 Hz 47~63 Hz

Input Current 1.2 A max. 1.4 A max
25 A/110 VAC
50A/220 VAC

(Inrush current)

Short Protection Yes Yes Yes

Output

Output Voltage +24VDC +24VDC +24VDC

Output Current 2.1 A 3 A 4.2 A

Overload Protection Yes Yes Yes

General

Dimension
181mm x 113 mm x
60 mm
(L x W x H)

181mm x 113 mm x
60 mm
(L x W x H)

181mm x 113 mm x
60 mm
(L x W x H)

Operating Temperature 0~50oC
(32~122oF)

 0~50oC
(32~122oF)

 0~50oC
(32~122oF)

DIN-rail Mountable Yes No No

Table 2.5 Power Supply Specification Table

Chapter 2 Installation Guidelines

2-10 ADAM-5510 Series User’s Manual

2.2.3 Install Main Unit and Modules

When inserting modules into the system, align the PC board of the
module with the grooves on the top and bottom of the system. Push
the module straight into the system until it is firmly seated in the
backplane connector. Once the module is inserted into the system,
push in the retaining clips (located at the top and bottom of the module)
to firmly secure the module to the system.

Figure 2-2 Module alignment and installation for 4-slot models
(ADAM-5510M and ADAM-5510/TCP)

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-11

Figure 2-3 Module alignment and installation for 8-slot models
(ADAM-5510E and ADAM-5510E/TCP)

2.2.4 I/O Slots and I/O Channel Numbering

The ADAM-5510M and ADAM-5510E system provides 4 slots for use
with I/O modules. The I/O slots are numbered 0 through 3, and the
channel numbering of any I/O module in any slot starts from 0. For
example, the ADAM-5017 is an 8-channel analog input module. Its
input channel numbering is 0 through 7.

Chapter 2 Installation Guidelines

2-12 ADAM-5510 Series User’s Manual

2.2.5 Mounting

The ADAM-5510 Series Controller can be installed on a panel or on a
DIN rail.

Panel mounting

Mount the system on the panel horizontally to provide proper
ventilation. You cannot mount the system vertically, upside down or on
a flat horizontal surface. A standard #7 tatting screw (4 mm diameter)
should be used.

Figure 2-4: Panel mounting screw placement for
(ADAM-5510M and ADAM-5510/TCP)

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-13

Figure 2-5: Panel mounting screw placement for 8-slot models

(ADAM-5510E and ADAM-5510E/TCP)

DIN rail mounting

Figure 2-6: Rail mounting for 4-slot models

(ADAM-5510M and ADAM-5510/TCP)

Retaining Clips

Chapter 2 Installation Guidelines

2-14 ADAM-5510 Series User’s Manual

Figure 2-7: Rail mounting for 8-slot models

(ADAM-5510E and ADAM-5510E/TCP)

The system can also be secured to the cabinet by using mounting
rails. If you mount the system on a rail, you should also consider using
end brackets at each end of the rail. The ended brackets help keep
the system from sliding horizontally along the rail. This minimizes the
possibility of accidentally pulling the wiring loose. If you examine the
bottom of the system, you will notice two small retaining clips. To
secure the system to a DIN rail, place the system on to the rail and
gently push up on the retaining clips. The clips lock the system on the
rail. To remove the system, pull down on the retaining clips, lift up on
the base slightly, and pull it away from the rail.

2.2.6 Jumper Settings and DIP Switch Settings
This section tells you how to set the jumpers and DIP switches to
configure your ADAM-5510 Series Controller. It gives the system
default configuration and your options for each jumper and dip switch.
There are three jumpers (JP2~JP4) on the CPU card, and one 8-pin
DIP switch on backplane.

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-15

JP2 is for the watchdog timer setting
JP3 is for COM2 port RS-485 setting (ADAM-5510M and
ADAM-5510E only.)
JP4 is for battery power ON/OFF setting
The following figure shows the location of the jumpers:

Figure 2-8: Jumper locations on the CPU card

2.2.6.1 COM2 port RS-485 control mode setting

The COM2 port is dedicated as an RS-485 interface. In an RS-485
network, handshaking signals such as RTS (Request to Send),
normally control the direction of the data flow. A special I/O circuit in
the ADAM-5510 Series Controller CPU module senses the data flow
direction and automatically switches the transmission direction,
making handshaking signals unnecessary. Jumper JP3 gives users
the option of configuring the COM2 port for automatic control or RTS
control. Jumper settings are shown in Figure 2-5:

Figure 2-9: COM2 port RS-485 control mode setting (JP3)

Chapter 2 Installation Guidelines

2-16 ADAM-5510 Series User’s Manual

Note: ADAM-5510/TCP and ADAM-5510E/TCP CPU module is set to

Auto Mode by default and there is no more JP3 available.

2.2.6.2 Watchdog timer setting

Jumper JP2 on the CPU card lets you configure the watchdog timer to
disable mode, reset mode or NMI (Non-maskable interrupt) mode.
Jumper settings are shown below:

Figure 2-10: Watchdog timer setting

2.2.6.3 Battery backup setting

Jumper JP4 on CPU card lets you configure the battery backup for
SRAM is ON or OFF. Jumper settings are shown below:

Figure 2-11: Watchdog timer setting

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-17

2.2.6.4 RS-232/485 selectable jumper setting

For ADAM-5510M and ADAM-5510/TCP:

The communication mode of COM4 is setting by the Jumper 1 on the
backplane. Please refer to Figure 2-12 to set the communication
interface you prefer to. The default setting of COM4 is RS-485
mode.

Figure 2-12 COM4 RS-232/485 Setting

For ADAM-5510E and ADAM-5510E/TCP:

The Communication mode of COM1 and COM4 are set by JP3 and
JP1 on the backplane. Please refer to Figure 2-13 to set the
communication interface. The default setting of COM1 is RS-232
mode and the default setting of COM4 is RS-485 mode.

Chapter 2 Installation Guidelines

2-18 ADAM-5510 Series User’s Manual

JP4

JP3

JP5

JP1

For COM1 For COM4

Figure 2-13 COM1/COM4 RS-232/485 Setting

2.2.6.5 DIP Switch Setting

Figure 2-14: ADAM-5510 Series DIP Switch

DIP 1-5 DIP 6 DIP 7,8

Device ID
Setting

Configuration Tool
via COM1/COM2

Reserved

Table 2.6 DIP Switch Function Table

Device ID Setting:

You can set up your device ID by changing DIP Switch 1-5. The
available ID for ADAM-5510 Series Controller is from 1 to 31.

Please refer to the Fig 2.7 Device ID DIP Switch Table to set up your
Device ID.

DIP Switch

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-19

DIP 1 DIP 2 DIP 3 DIP 4 DIP 5 Device ID
On Off Off Off Off 1
Off On Off Off Off 2
On On Off Off Off 3
Off Off On Off Off 4
On Off On Off Off 5
Off On On Off Off 6
On On On Off Off 7
Off Off Off On Off 8
On Off Off On Off 9
Off On Off On Off 10
On On Off On Off 11
Off Off On On Off 12
On Off On On Off 13
Off On On On Off 14
On On On On Off 15
Off Off Off Off On 16
On Off Off Off On 17
Off On Off Off On 18
On On Off Off On 19
Off Off On Off On 20
On Off On Off On 21
Off On On Off On 22
On On On Off On 23
Off Off Off On On 24
On Off Off On On 25
Off On Off On On 26
On On Off On On 27
Off Off On On On 28
On Off On On On 29
Off On On On On 30
On On On On On 31

Table 2.7 Device ID DIP Switch Table

Note: DIP switch 0 is reserved by system configuration. Please leave

this ID available.

Chapter 2 Installation Guidelines

2-20 ADAM-5510 Series User’s Manual

Selecting COM port for configuration tool

You can swap the connection for configuration tool SIMU5KE.EXE via
COM1 or COM2 by changing DIP switch 6 status. Please refer to
Chapter 3.4 for further information.

DIP 6 Configuration Tool
OFF Via COM2 RS-485
ON Via COM1 RS-232

Figure 2-15: ADAM-5510 Series COM1 and COM2

2.2.7 Pin assignment of COM port

Table 2.8 RS-232 Port Pin Assignment

COM1, RS-232

COM2, RS-485

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-21

Table 2.9 RS-485 Port Pin Assignment

2.3 System Wiring and Connections

This section provides basic information on wiring the power supply,
I/O units, communication port connection and programming port
connection.

2.3.1 Power supply wiring

Although the ADAM-5510 Series Controller is designed for a standard
industrial unregulated 24 V DC power supply, they accept any power
unit that supplies within the range of +10 to +30 VDC . The power
supply ripple must be limited to 200 mV peak-to-peak, and the
immediate ripple voltage should be maintained between +10 and +30
VDC. Screw terminals +Vs and GND are for power supply wiring.

Note: The wires used should be sized at least 2 mm.

Chapter 2 Installation Guidelines

2-22 ADAM-5510 Series User’s Manual

Power Supply +
+10~+30 Vdc -

Figure 2-16: ADAM-5510 Series Controller power wiring

2.3.2 I/O modules wiring

The system uses a plug-in screw terminal block for the interface
between I/O modules and field devices. The following information
must be considered when connecting electrical devices to I/O
modules.

1. The terminal block accepts wires from 0.5 mm 2 to 2.5 mm.
2. Always use a continuous length of wire. Do not combine wires to

make them longer.
3. Use the shortest possible wire length.
4. Use wire trays for routing where possible.
5. Avoid running wires near high energy wiring.
6. Avoid running input wiring in close proximity to output wiring where

possible.
7. Avoid creating sharp bends in the wires.

2.3.3 System Network Connection

The ADAM-5510 Series Controller has four communication ports.
These ports allowed you to program, configure, monitor, and integrate
the remote devices.

Network Connection for System Configuration and Download
The ADAM-5510 Series Controller has a programming port with a
DB-9 connection. This port (COM3) allows you to program, configure,
and troubleshoot the ADAM-5510 Series Controller from your host
computer. The programming port has an RS-232 interface and only
uses TX, RX, and GND signals. The cable connection and the pin
assignment are as follows:

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-23

Figure 2-17 System Configuration Wiring

RS-232 Network Connection for System Monitoring and
Integration

Since the connection for an RS-232 interface is not standardized,
different devices implement the RS-232 connection in different ways.
If you are having problems with a serial device, be sure to check the
pin assignments for the connector. The following table shows the pin
assignments for the ADAM-5510 Series Controller COM1 RS-232
port.

Note: The COM1 of ADAM-5510M and ADAM-5510/TCP is dedicated

as an RS-232 interface. However, the COM1 of ADAM-5510E
and ADAM-5510E/TCP is RS-232/RS-485 selectable. All
models of ADAM-5510 Series Controllers’ COM4 is RS-232/485
selectable.

Chapter 2 Installation Guidelines

2-24 ADAM-5510 Series User’s Manual

RS-485 Network Connection for System Monitoring and
Integration

The ADAM-5510 Series Controller provides RS-485 interfaces for
multi-drop network integration. The COM2 is a dedicate RS-485
interface (Screw terminals DATA- and DATA+ are used for making the
COM2 RS-485 connections). The COM4 is an RS-232/485 selectable
DB-9 connector. Usually, you will need to prepare an ADAM-4520
RS232 to RS-485 converter to link with host PC for data monitoring
See Figure 2-18.

Figure 2-18 System Monitoring Wiring

Chapter 2 Installation Guidelines

ADAM-5510 Series User’s Manual 2-25

Ethernet Network Connection

The ADAM-5510/TCP and ADAM-5510E/TCP provide Ethernet
interface for network integration. Usually, you will need to prepare an
ADAM-6520 Ethernet switch or hub for connecting to other network
devices as following figure.

Figure 2-19 Ethernet Connection

Chapter 2 Installation Guidelines

2-26 ADAM-5510 Series User’s Manual

2.4 Software Installation

When main unit installation is completed, you may begin to configure
the I/O modules and download program to the ADAM-5510 Series
Controller. ADAM-5510 Series Controller comes packaged with a
Utility CD, containing ADAM Product series Utilities as system
configuration tool. While you Insert the CD into the CD drive (e.g. D:)
of the host PC, the Utility software setup menu will start up
automatically. Click the ADAM-5510 Series icon to execute the setup
program, and there will be a Utility executive program installed in your
host PC. See chapter 3 I/O Configuration and Program Download for
the detail operation.

3
I/O Configuration and Program Download

Chapter 3 I/O Configuration and Program Download

3-2 ADAM-5510 Series User’s Manual

This chapter explains how to use the ADAM-5510 Series Utility to
configure the I/O modules and download application programs into the
ADAM-5510 Series system.

Two more utilities will be used to finish the configuration. The first one
is “SIMU5KE.EXE” which needs to be run on ADAM-5510 Series
system for simulating ADAM-5000E system. The other one is “ADAM-
4000-5000.EXE” which needs to be run on host computer for
configuring the I/O modules.

3.1 System Hardware Configuration

Before the system configuration, you will need to setup the
environment as we mentioned in Chapter 2.1: System Requirements.

3.2 Install Utility Software on Host PC

ADAM-5510 Series systems packaged with a Utility CD, containing
ADAM Product Series Utilities as system configuration tools. While
you insert the CD into the CD drive (e.g. D:) of the host PC, the Utility
software setup menu will start up automatically.

Click the ADAM-5510 Series icon to execute the setup program. After
installation, you will find related directories under “ADAM-5510 Series
Utility” directory as following.

ADAM-5510M-5510E Utility

Config (Configuration tool SIMU5KE.EXE)

Program (ADAM-5510 series utility)

Source (Image, function libraries and examples)

Example (Example programs)

Image (ADAM-5510M/5510E Drive C image file)

Library (Function Libraries)

Basic_Function (Basic function examples)

ModbusRTU (Modbus RTU examples)

5510_Lib (Basic function libraries)

ModRTU_Lib (Modbus RTU libraries)

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-3

ADAM-5510TCP-5510ETCP Utility

Config (Configuration tool SIMU5KE.EXE)

Program (ADAM-5510 series utility)

Source (Image, function libraries and examples)

Example (Example programs)

Image (ADAM-5510/TCP and 5510E/TCP Drive C image file)

Lib (Function Libraries)

Basic_Function (Basic function examples)

ModbusRTU (Modbus RTU examples)

5510_Lib (Basic function libraries)

ModRTU_Lib (Modbus RTU libraries)

*Drive_D (Drive D files for ADAM-5510/TCP and 5510E/TCP only)

*Default_files (Needed by ADAM-5510/TCP and 5510E/TCP only)

*Extension_files (Option files for ADAM-5510/TCP and 5510E/TCP only)

*Mail (Example of sending mail function)

*httpEx (Examples of HTTP server and CGI function)

*DemoModbus (Simple examples of Modbus/RTU and Modbus/TCP)

*ModbusTCP (Modbus TCP examples)

*TCP (Examples of TCP and UDP connections)

*http_Lib (HTTP function libraries)

*ModTCP_Lib (Modbus TCP libraries)

*Sockets_Lib (Socket libraries)

* For ADAM-5510/TCP and ADAM-5510E/TCP only

Chapter 3 I/O Configuration and Program Download

3-4 ADAM-5510 Series User’s Manual

3.3 ADAM-5510 Series Utility Overview
3.3.1 COM port selection for host PC.

3.3.2 “Refresh Folder” button for displaying the files and

directories on drive D: of ADAM-5510 Series system.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-5

3.3.3 “Config ADAM” button for configuring analog input/output

modules.

3.3.4 “Launch Terminal” button for launching terminal emulation

function.

Chapter 3 I/O Configuration and Program Download

3-6 ADAM-5510 Series User’s Manual

3.3.5 “ADAM-5510/TCP Configuration” button for configuring

network, FTP/HTTP server settings and performing system
initialization function.

3.3.6 “Image Worker” button for backup drive D as image file and

restore image file to drive D.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-7

3.3.7 “Download” button for copying files to ADAM-5510 Series

system.

Chapter 3 I/O Configuration and Program Download

3-8 ADAM-5510 Series User’s Manual

3.4 Example of I/O Module Configuration

3.4.1 Install ADAM-5510 Series Utility

1. Insert the ADAM Products CD and setup ADAM-5510 Series
Utility.

2. After the ADAM-5510 Series Utility has been installed, you will
find two directories under “C:\Program Files\Advantech\ADAM-
5510 Series Utility” directory. They are named “ADAM-5510M-
5510E Utility” and “ADAM-5510TCP-5510ETCP Utility”. So if
you are using ADAM-5510M or ADAM-5510E, you have to use
the files under “ADAM-5510M-5510E Utility” directory. If you
are using ADAM-5510/TCP or ADAM-5510E/TCP, you have to
use the files under “ADAM-5510TCP-5510ETCP Utility”
directory.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-9

3.4.2 Configure the I/O Modules by ADAM-5510 Series Utility

Following steps will use ADAM-5510/TCP as an example to
demonstrate how to configure the ADAM-5017 Analog Input
Module.

1. Programming Port Wiring for configuration.

RS-232

PC

straight through cable

Analog Input
Analog Output
Digital Input
Digital Output

COM3 RS-232 (Prog. Port)

CD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

N/A
TX
RX
N/A
GND
N/A
N/A
N/A
N/A

1
2
3
4
5
6
7
8
9

PC COM port ADAM-5510 Series COM3straight through cable

2. Connect INIT* pin to power GND pin and then reboot.

Chapter 3 I/O Configuration and Program Download

3-10 ADAM-5510 Series User’s Manual

3. Please click “Program” directory under “ADAM-5510TCP-

5510ETCP Utility” and run “ADAM5510.EXE”, which is so
called ADAM-5510 Series Utility. You will find following figure.

4. Click Refresh button to check if the drive D: of ADAM-
5510TCP is detected correctly.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-11

5. Click “Config ADAM” button. Select Slot3 and configure the

input range.

6. Download I/O Module Configuration Tool “SIMU5KE.EXE”
under “Config” directory onto Drive D: of ADAM-5510/TCP.

Chapter 3 I/O Configuration and Program Download

3-12 ADAM-5510 Series User’s Manual

7. Set DIP SW6 as ON.

COM Port Selection for Configuration Tool:

DIP SW6
ON COM1/RS-232

8. Set DIP SW1 to SW5 as OFF.

ID Address = 0

DIP SW1 SW2 SW3 SW4 SW5
OFF 0 0 0 0 0

9. Run “SIMU5KE.EXE” and check the Communication Tool does

use COM1/RS-232 port.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-13

10. Connect Host PC to COM1/RS-232 on ADAM-5510/TCP by
null modem cable.

RS-232

PC

Null modem cable

Analog Input
Analog Output
Digital Input
Digital Output

COM1 RS-232

CD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

CD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

PC COM port ADAM-5510 Series COM1Null modem cable

11. Insert the ADAM Products CD and setup ADAM-4000-5000

Utility.

Chapter 3 I/O Configuration and Program Download

3-14 ADAM-5510 Series User’s Manual

12. Close ADAM-5510 Series Utility and run ADAM-4000-5000
Utility “ADAM40005000.EXE”.

13. Search the ADAM-5510/TCP Module and configure the input

range of ADAM-5017 Analog Input Module.

14. Close the ADAM-4000-5000 Utility. Disconnect INIT* pin to

power GND pin and then reboot ADAM-5510/TCP.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-15

3.5 Initialize the drive D: to default settings. (For ADAM-5510/TCP
and ADAM-5510E/TCP only)

Following steps will show you how to initialize the drive D: to
default settings for ADAM-5510/TCP. The drive D: of ADAM-
5510/TCP will return to initial files and settings after this function
is performed. You will get the same result when you perform the
same steps for ADAM-5510E/TCP. As there is no system files
on drive D: of ADAM-5510M and ADAM-5510E, you can simply
neglect this section and go to section 3.7.

1. Connect INIT* pin to power GND pin and then reboot.

2. Click on “ADAM-5510/TCP Configuration” button.

Chapter 3 I/O Configuration and Program Download

3-16 ADAM-5510 Series User’s Manual

3. Select “HTTPFTP Server” item and click “Go” button.

4. Click “Yes” to initialize drive D and it will be formatted and all
the files on drive D will be lost. If you would like to keep the
drive contents, please go to section 3.8.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-17

5. You will find the initialization process is performing.

6. Click “OK” to finish the initialization procedures.

Chapter 3 I/O Configuration and Program Download

3-18 ADAM-5510 Series User’s Manual

7. The directory of drive D will be refreshed as following picture.

8. In this demonstration, you will find the FTP & HTTP Server file
is under “WEBROOT” directory.

9. Disconnect INIT* pin to power GND pin and then reboot
ADAM-5510/TCP.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-19

3.6 Configure IP address and ftp/http user/password settings.

(For ADAM-5510/TCP and ADAM-5510E/TCP only)

Following steps will show you how to configure IP address and
users/password of FTP server and HTTP server for ADAM-
5510/TCP. Please note the default IP address is “10.0.0.1”.
You will get the same result when you perform the same steps
for ADAM-5510E/TCP. As the Ethernet port is not supported by
ADAM-5510M and ADAM-5510E, you can simply neglect this
section and go to section 3.7.

1. Connect INIT* pin to power GND pin and then reboot.

2. Click on “ADAM-5510/TCP Configuration” button.

Chapter 3 I/O Configuration and Program Download

3-20 ADAM-5510 Series User’s Manual

3. Select “Static IP” and fill in the IP address and Gateway IP.

Select “Obtain DNS address automatically” item. Click “Update”
button to perform the configuration.

Note: Above settings is only an example. You have to configure the

network settings by your network environment.

4. Click “OK” to finish the network configuration.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-21

5. Fill in the user name, password and access right for FTP

server and HTTP server. Click “Update” button to perform the
configuration.

Note: This utility can only let you configure one user for FTP server and

one user for HTTP server. If you would like to configure multi-users
for FTP server and HTTP server, please refer to chapter 4.

6. Click “OK” to finish the configuration.

7. Disconnect INIT* pin to power GND pin and then reboot
ADAM-5510/TCP.

Chapter 3 I/O Configuration and Program Download

3-22 ADAM-5510 Series User’s Manual

3.7 Download and run the application program automatically after

boot up
Following steps will demonstrate the function by updating
“AUTORUN.BAT” and run “DHCPSTAT.EXE” automatically
after boot up.

1. Download the “DHCPSTAT.EXE” onto ADAM-5510/TCP.

2. Edit “AUTORUN.BAT” under “Source\Drive_D\Default_Files”

directory.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-23

3. Update “AUTORUN.BAT” to ADAM-5510/TCP in the utility.

4. Reset the ADAM-5510/TCP and check if the

“DHCPSTAT.EXE” has been executed correctly.

Chapter 3 I/O Configuration and Program Download

3-24 ADAM-5510 Series User’s Manual

3.8 Backup drive D as image file.

Following steps will use ADAM-5510/TCP as an example to
demonstrate how to backup drive D as image file.

1. Connect INIT* pin to power GND pin and then reboot.

2. Click “Refresh” button.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-25

3. Click “Image Worker” button and perform the backup function.

4. Click “Backup Image” button.

Chapter 3 I/O Configuration and Program Download

3-26 ADAM-5510 Series User’s Manual

5. Check if there is 10KB free space on drive D and ADAM-

5510/TCP is in initial mode. Click “Yes” to start the backup.

6. Type the file name and click “Save”.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-27

7. Backup function is processing.

8. Click “OK” to finish the backup process. Disconnect INIT* pin
to power GND pin and then reboot ADAM-5510/TCP.

Chapter 3 I/O Configuration and Program Download

3-28 ADAM-5510 Series User’s Manual

3.9 Restore the drive D from image file.

Following steps will use ADAM-5510/TCP as an example to
demonstrate how to restore image file to drive D.

1. Connect INIT* pin to power GND pin and then reboot.

2. Click “Image Worker” button and perform the restore function.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-29

3. Click “Restore Image” button.

4. Check the warning message. Make sure all files on drive D can
be deleted and then click “Yes”.

Chapter 3 I/O Configuration and Program Download

3-30 ADAM-5510 Series User’s Manual

5. Select the image file and click “Open”.

6. The restore function is processing.

 Chapter 3 I/O Configuration and Program Download

ADAM-5510 Series User’s Manual 3-31

7. Click “OK” to finish the restore process. Disconnect INIT* pin to

power GND pin and then reboot ADAM-5510/TCP.

8. Check the drive D has been restored from the backup image
file.

4
Guidelines for Network Functions

Chapter 4 Guidelines for Network Functions

4-2 ADAM-5510 Series User’s Manual

The network features of ADAM-5510 Series Controller are very rich
especially on Ethernet-enabled models such as ADAM-5510/TCP and
ADAM-5510E/TCP. In order to speed up the learning curve about
versatile network features, the network functions will be present by
step-by-step demonstration in this chapter. The detail information of
related functions, utilities and applications are shown on later chapters.
The sample programs can also be found after ADAM-5510 Series
Controller utility on ADAM CD is installed.

Before you start to test the network functions, you have to configure
two files as following.

SOCKET.CFG: Text file contains related configuration command.
SOCKET.UPW: Text file contains user name and password.

SOCKETS Configuration Files: SOCKET.CFG, HOSTS

SOCKETS uses two files in the D:\CFG directory (default), or any
other directory specified by the SOCKETS environment variable.
These files are SOCKET.CFG, the default start-up file, and HOSTS,
the host names file. If not found, SOCKETS uses the default
SOCKET.CFG in the D:\CFG directory.

SOCKET.CFG is a text file containing configuration commands.
Empty lines and lines starting with # are ignored. Commands are used
to specify protocol parameters like the IP address of the stack,
interface parameters like Packet Driver or Asyncronous Serial lines,
routes and various other parameters. Here is a simple example:

ip address demo

Set the IP address of this host to 192.6.1.1.
interface pdr if0 dix 1500 5

Use Packet Driver, naming the interface ‘if0’, MTU=1500,
Receive buffers = 5

route add default if0 router
Route all traffic to unkown destinations via ‘if0’ using ‘router’
as a gateway

tcp mss 1460
TCP Maximum Segment Size = 1460.

tcp window 2920
TCP Maximum window = 2920.

start prntserv

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-3

Start printer server on PRN using default port of 10.

HOSTS is an optional file containing mappings of IP addresses in
dotted decimal notation to names.

Sample HOSTS file:

192.6.1.1 demo
192.6.1.2 router
192.6.1.3 server

SOCKET.CFG Samples

The following configuration file contains the minimum possible
commands for a valid configuration file: just one. This is to specify that
the interface should use a Packet Driver, the interrupt vector, which
must be searched for. It should use DIX encapsulation, have an MTU
of 1500 and have a maximum of 5 receive buffers. Since no IP
address is specified, BOOTP will be used and the required operating
parameters will be retrieved from a BOOTP server, which must be
available on the network.

SOCKET.CFG:
interface pdr if0 dix 1500 5

The following is a more typical example specifying a static IP address,
a Packet Driver interface, a default route, the TCP MSS and
WINDOW.

SOCKET.CFG:
Sample configuration file
ip address 192.6.1.1
interface pdr if0 dix 1500 5
route add default if0 192.6.1.2
tcp mss 1460
tcp window 2920

Chapter 4 Guidelines for Network Functions

4-4 ADAM-5510 Series User’s Manual

Format of "SOCKET.UPW"

This is the same file used for the HTTP and FTP server’s (FTPD.EXE)
permissions. This file consists of lines where each line contains a
user's information. A line starting with a # is considered a comment
and is ignored. Each line consists of four fields:

<Username> <Password> <Working Directory> <Permissions> [# comment]

Username: The name of this user. If it is *, it will be used when the
client does not specify a username.

Password: This user's password. If it is *, no password is required

Working Directory: The user will only have access to this directory and
its subdirectories. If it is ‘/’, this user has access to the whole system.
HTTP_DIR can be referred to as ‘\’. If a relative path is specified, it is
appended to HTTP_DIR.

Permissions: IMPORTANT when a user is granted both FTP and
HTTP permissions, the FTP permissions must appear first, otherwise
they will be ignored.

Operations allowed. May contain any combination of the following
tokens:

e - User may 'get' files
p - User may 'post' files
g - User may use cgi

Fields should be separated by single spaces. If any field is missing the
entry is ignored. A comment may follow the last field (permissions) of
the line.

Note: If a default user is supplied, it should always appear first in the
list of users. Only users below the default user will be considered.

Example configuration files, which are used by following
demonstrations:

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-5

SOCKET.CFG:

Packet driver settings
ip address 192.168.1.4
interface pdr if0 dix 1500 10 0x60

The following will cause SOCKETS to display IP status
ip address

The following lines set TCP parameters
ip ttl 64
tcp mss 1460
tcp window 2920

SOCKET.UPW:

su su \WebRoot drwcepgm # su may do everything on whole system.
* * \guest rg # default user may read (FTP) and get (HTTP)
 # from %HTTP_DIR%\guest
test1 test1 \ drep # test1 can change directories and read files (FTP)

 # test1 get and post files (HTTP) in %HTTP_DIR%\
ftp1 ftp1 \WebRoot rd # ftp1 can read files and change directories (FTP)
 # in %HTTP_DIR%\guest and has no HTTP rights
http1 http1 / epgm # http1 can get and post files, use CGI,
 # and use remote console.
 # http1 has no FTP rights
user1 user1 \guest\user1 rdcw # user1 has full FTP access rights to the
 # directory %HTTP_DIR%\user\user1

Chapter 4 Guidelines for Network Functions

4-6 ADAM-5510 Series User’s Manual

4.1 FTP Server

Application: FTPD.EXE or HTTPFTPD.EXE
System configuration:
- ADAM-5510/TCP main unit
- FTP Client program on host PC

1. Download FTPD.EXE or HTTPFTPD.EXE onto drive D under

“Webroot” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-7

2. Run FTPD.EXE or HTTPFTPD.EXE at resident.

3. Check the FTP function by FTP client application.

Chapter 4 Guidelines for Network Functions

4-8 ADAM-5510 Series User’s Manual

4. Login FTP server by another FTP client application.

5. Check the files under “WEBROOT” directory are correctly.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-9

4.2 HTTP Server

Example program: HTTPDEMO.EXE (without CGI function)
Source file: HTTPDEMO.C under ”Source\Example\httpEx” directory
Application: HTTPD.EXE or HTTPFTPD.EXE
ADAM-5510/TCP configuration:
- ADAM-5510/TCP main unit
- ADAM-5051D at slot 0
- ADAM-5056D at slot 1
- ADAM-5068 at slot 2
- ADAM-5017 at slot 3
- Short ADAM-5051D DI0 to ADAM-5056D DO0, DI1 to DO1,…,

DI15 to DO15

1. Download HTTPD.EXE or HTTPFTPD.EXE onto drive D under

“WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-10 ADAM-5510 Series User’s Manual

2. Run HTTPD.EXE or HTTPFTPD.EXE at resident.

3. Build HTTPDEMO.EXE from HTTPDEMO.PRJ
under ”Source\Example\httpEx” directory and download
HTTPDEMO.EXE onto drive D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-11

4. Run HTTPDEMO.EXE.

5. Run IE, type URL “http://192.168.1.4/index.htm” and login.

Chapter 4 Guidelines for Network Functions

4-12 ADAM-5510 Series User’s Manual

6. Check the DO channels on ADAM-5056D switching ON/OFF

periodically and check the DI channels’ status is shown on IE.

7. Check the DI channels’ status is switching ON/OFF periodically.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-13

The following figure is the software architecture of HTTP Server
function. The HTTP Server has built-in the ADAM-5510/TCP (or
ADAM-5510E/TCP) Ethernet Controller. Whenever users open the IE
Browser to acquire data from ADAM-5510/TCP controller through
Internet or Intranet, it will call up the existed web pages to provide a
monitor and control portal. All of the commands from the web page
must be linked via a CGI program to the C control program which
handle the real read/write action in ADAM-5000 I/O modules.

Basically, there are three steps in the process of Web Monitoring &
Control.
1. Registration: Register a HTML name for the web page you

designed
2. User login and invoke control program: After registration, users

can invoke local control program by login Server
3. Local I/O activated by local control program

Chapter 4 Guidelines for Network Functions

4-14 ADAM-5510 Series User’s Manual

HTTPDEMO.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <process.h>

#include "5510drv.h"
#include "CGI_Lib.h"

FILE *fp;
int number = 0;
int count = 1;

unsigned LocalDIO(void);
unsigned int LocalAIO(void);
void ReplaceStr(char *ptr_str1, char *ptr_str2, int len_str);

void main(void)
{
 char * homepage_name = "index.htm";

 Init501718(3);

 if(!Http_Server_Reg(homepage_name)) // registration
 return;

 adv_printf("Program exiting...");
 HttpDeRegister("index.htm");
}

int far Callback(HTTP_PARAMS far* psParams)
// implement your program in this function
{
 static char *ptr_XX = 0;
 static char *ptr_OO = 0;
 char *tmpStr = 0;
 static char Htm_Content[] = "HTTP/1.0 200 OK\r\n"
 // content of html page, content=1

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-15

 "Content-type: text/html\r\n\r\n"
 // means refreshes every 1 second
 "<html><META HTTP-EQUIV=""Refresh"" content=1>"
 "Adam-5051 status is OOOOOOO<p>"
 "Adam-5017 channel 0 status is XXXXXXX"
 "</html>";

 number++;
 adv_printf("Refresh %d times...\n", number);

 if (!ptr_OO)
 ptr_OO = strstr(Htm_Content, "OOO");

 sprintf(tmpStr, "0x%X", LocalDIO());
 ReplaceStr(ptr_OO, tmpStr, 7);
 tmpStr = 0;
 if (!ptr_XX)
 ptr_XX = strstr(Htm_Content, "XXX");
 sprintf(tmpStr, "%d", LocalAIO());
 ReplaceStr(ptr_XX, tmpStr, 7);
 HttpSendData(psParams->iHandle, Htm_Content, strlen(Htm_Content));
 return RET_DONE;
}

unsigned LocalDIO(void)
 // set Adam-5056&5068 and return Adam-5051 Status
{
 unsigned div, dov;
 char dov1;

 if(count%2==0)
 {
 dov = 0xffff;
 dov1 = 0x0;
 }
 else
 {
 dov = 0x0000;
 dov1 = 0xff;
 }

Chapter 4 Guidelines for Network Functions

4-16 ADAM-5510 Series User’s Manual

 count++;
 if(count>100)
 count = 1;
 Set5068(&dov1,2,0,AByte); //slot 2
 Set5056(&dov,1,0,AWord); //slot 1

 Get5051(0,0,AWord,&div); //slot 0
 return ~div;
}

unsigned int LocalAIO(void) //return Adam-5017 channel 0 status
{

 unsigned int aiv;
 int ch, tmpcnt;

 tmpcnt=0;
 while(1)
 {
 if(AiUpdate(3,0)==0)
 {
 tmpcnt++;
 Get501718(3, 0, &aiv);
 if(tmpcnt>=8)
 break;
 }
 }
 return aiv;
}

void ReplaceStr(char *ptr_str1, char *ptr_str2, int len_str) // replace string
{
 int i;
 for(i=0; i<len_str; i++)
 ptr_str1[i] = 32;

 for(i=0; i<strlen(ptr_str2); i++)
 ptr_str1[i] = ptr_str2[i];
}

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-17

Example program: ADAM.EXE (with CGI function)
Source file: ADAM.C and WEBADAM.htm under

“Source\Example\httpEx” directory
Application: HTTPD.EXE or HTTPFTPD.EXE
ADAM-5510/TCP configuration:
- ADAM-5510/TCP main unit
- ADAM-5051D at slot 0
- ADAM-5056D at slot 1
- ADAM-5068 at slot 2
- ADAM-5017 at slot 3
- Short ADAM-5051D DI0 to ADAM-5056D DO0, DI1 to DO1,…,

DI15 to DO15

1. Download HTTPD.EXE or HTTPFTPD.EXE onto drive D under

“WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-18 ADAM-5510 Series User’s Manual

2. Run HTTPD.EXE or HTTPFTPD.EXE at resident.

3. Build ADAM.EXE from ADAM.PRJ under ”Source\Example\

httpEx” directory and download ADAM.EXE and WEBADAM.htm
onto drive D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-19

4. Run ADAM.EXE.

5. Run IE, type the URL as “http://192.168.1.4/webadam.htm” and

input the value for DO channels then click “Submit” button.

6. Check the DO channels’ status on ADAM-5056D is changed

correctly.

Chapter 4 Guidelines for Network Functions

4-20 ADAM-5510 Series User’s Manual

ADAM.C

#include <stdio.h>
#include <io.h>
#include <process.h>
#include <stdlib.h>
#include <string.h>

#include "5510drv.h"
#include "CGI_Lib.h"

extern unsigned _stklen = 3000;
extern unsigned _heaplen = 2000;

int far Callback(HTTP_PARAMS far* psParams);
int returnVal(char *ptr_name, char *ptr_end);
void LocalDIO(int DO_val);
int count = 1;

void main(void)
{
 char * homepage_name = "Adam.htm";

 if(!Http_Server_Reg(homepage_name))
 return;

 adv_printf("Program exiting\n");
 HttpDeRegister("Adam.htm");
}

int far Callback(HTTP_PARAMS far* psParams) //implement your
program in this function
{
 char buf[200],*p,*ptr_val,*ppass;
 int iQueryLen;
 char Re_Htm_Content[400];
 char *ptr_Re = Re_Htm_Content;
 int numberbytes;
 int DoVal, DIVal;

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-21

 *buf = 0;

 iQueryLen = _fstrlen(psParams->szQuery);
 if (iQueryLen)
 _fmemcpy (buf,psParams->szQuery, iQueryLen);

 numberbytes = HttpGetData(psParams->iHandle, buf + iQueryLen, 200 -
iQueryLen);

 if (numberbytes < 0)
 {
 if (numberbytes == (-WOULDBLK))
 return RET_OK;
 else
 adv_printf("wrong input value\n");
 }

 iQueryLen += numberbytes;

 ptr_Re += sprintf(ptr_Re, "HTTP/1.0 200 OK\r\nContent-type:
text/html\r\n\r\n<html><h1>");
 if (strncmp(buf,"DOValues=", 9) == 0) {
 ptr_val = buf + 9;
 if ((p = strchr(ptr_val,'&')) == NULL)
 adv_printf("Please click Submit button..\n");

 adv_printf("the DO val is 0x%x\n", returnVal(ptr_val, p));
 LocalDIO(returnVal(ptr_val, p));
 }
 ptr_Re += sprintf(ptr_Re, "<P><P>Back.</html>\n");
 HttpSendData(psParams->iHandle, Re_Htm_Content, ptr_Re -
Re_Htm_Content);
 return RET_DONE;
}

int returnVal(char *ptr_name, char *ptr_end)
{
 int r_Val, buf_idx;
 char buf_val[10];

Chapter 4 Guidelines for Network Functions

4-22 ADAM-5510 Series User’s Manual

 memset(buf_val, 0, 10);

 for(buf_idx=0; buf_idx<10; buf_idx++)
 {
 if(ptr_name == ptr_end)
 break;
 buf_val[buf_idx] = ptr_name[buf_idx];
 }

 sscanf(buf_val, "%X", &r_Val);
 return r_Val;
}

void LocalDIO(int DO_val)
{
 unsigned div, dov;
 char dov1;

 if(count%2==0)
 {
 dov = ~DO_val;
 dov1 = 0x0;
 }
 else
 {
 dov = ~DO_val;
 dov1 = 0xff;
 }

 count++;
 if(count>100)
 count = 1;
 Set5068(&dov1,2,0,AByte);
 Set5056(&dov,1,0,AWord);

 return;

}

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-23

WEBADAM.htm

<html>
<head>
</head>

<body>

 <p><p><p><p>
 Please enter Adam-5056 status in hexadecimal format and click Submit.

 <form action="Adam.htm" method=post name="login1">

 <table>
 <tr>
 <td>Adam-5056 Status:</td>
 <td align=right><input name="DOValues" type=text size=30
maxlength=50></td>
 </tr>
 <tr>
 <td>
 <input name="submit" type=submit value="Submit">
 </td>
 </tr>
 </table>

</body>
</html>

Chapter 4 Guidelines for Network Functions

4-24 ADAM-5510 Series User’s Manual

4.3 Send Mail

Example program: AMAIL.EXE, MAIL.TXT
Source file: ALARMMAIL.C under “Source\Example\mail” directory
Utility: SENDMAIL.EXE, MAKEMAIL.EXE
ADAM-5510/TCP configuration:
- ADAM-5510/TCP main unit
- ADAM-5051D at slot 0
- ADAM-5056D at slot 1
- ADAM-5068 at slot 2
- ADAM-5017 at slot 3
- Short ADAM-5051D DI0 to ADAM-5056D DO0, DI1 to DO1,…,

DI15 to DO15

1. Download SENDMAIL.EXE, MAKEMAIL.EXE and MAIL.TXT onto

drive D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-25

2. Build AMAIL.EXE from AMAIL.PRJ under ”Source\Example\mail”

directory and download AMAIL.EXE onto drive D under
“WEBROOT” directory.

3. Run AMAIL.EXE and change the value for DO channels from 0 to

FF for triggering the alarm email.

Chapter 4 Guidelines for Network Functions

4-26 ADAM-5510 Series User’s Manual

4. Check the mailbox and it receives the email correctly.

Note: The IP address of ADAM-5510/TCP should be at the same

domain with the IP address of mail server, which will help you
to send out the email from ADAM-5510/TCP. If you ask another
mail server whose IP address is not at the same domain, the
mail server will verify the IP address of the email sending from
and then stop to provide service for sending out the email for
ADAM-5510/TCP.

MAIL.TXT:

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-27

ALARMMAIL.C

#include <stdio.h>
#include <process.h>
#include <errno.h>
#include "5510drv.h"

int SendAlarmMail(void);
int MakeAlarmMail(void);

int count = 1;

void main(void)
{
 unsigned div, dov;
 char dov1;

 if(!MakeAlarmMail())
 {
 adv_printf("make mail fail..");
 return;
 }

 while(1)
 {
 adv_printf("Please input Adam-5056 output values: ");
 scanf("%X", &dov);
 if(count%2==0)
 {
 dov1 = 0x0;
 }
 else
 {
 dov1 = 0xff;
 }

 if(dov == 0x33)
 return;

 count++;
 if(count>100)

Chapter 4 Guidelines for Network Functions

4-28 ADAM-5510 Series User’s Manual

 count = 1;

 Set5068(&dov1,2,0,AByte);
 Set5056(&dov,1,0,AWord);

 Get5051(0,0,AWord,&div);

 if(div == 0x00ff)
 {
 if(!SendAlarmMail())
 {
 adv_printf("send mail error..");
 return;
 }
 }
 }

}

int MakeAlarmMail(void)
{
 char * arg_To = "-t567@123.com";
 char * arg_From = "-f345@hotmail.com";
 char * arg_subject = "-s5510TCP";
 char * arg_MailContent = "-bmail.txt";
 char * arg_O_mail = "-omail.dat";

 adv_printf("Making Mail..\n");
 if(spawnlp(P_WAIT,
 "d:\\mail\\makemail.exe",
 "d:\\mail\\makemail.exe",
 arg_To,
 arg_From,
 arg_subject,
 arg_MailContent,
 arg_O_mail,
 NULL)==-1)
 {
 return 0;
 }

 return 1;

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-29

}

int SendAlarmMail(void)
{
 char * arg1 = "smtp.123.com";
 char * arg2 = "mail.dat";

 adv_printf("send Alarm mail prepare..\n");
 if(spawnlp(P_WAIT,"d:\\mail\\sendmail.exe","d:\\mail\\sendmail.

exe",arg1,arg2,NULL)==-1)
 {
 return 0;
 }

 return 1;
}

Chapter 4 Guidelines for Network Functions

4-30 ADAM-5510 Series User’s Manual

4.4 Modbus/TCP Server

Example program: DEMOTS.EXE
Source file: DEMOTS.C under “Source\Example\DEMOMODBUS”

directory
ADAM-5510/TCP configuration:
- ADAM-5510/TCP main unit
- ADAM-5051D at slot 0
- ADAM-5056D at slot 1
- ADAM-5068 at slot 2
- ADAM-5017 at slot 3
- Short ADAM-5051D DI0 to ADAM-5056D DO0, DI1 to DO1,…,

DI15 to DO15

1. Build DEMOTS.EXE from DEMOTS.PRJ under ”Source\Example\

DemoModbus” directory and download DEMOTS.EXE onto drive
D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-31

2. Run DEMOTS.EXE

3. Run Advantech Modbus/TCP OPC Server and connect to ADAM-

5051D DI0.

Chapter 4 Guidelines for Network Functions

4-32 ADAM-5510 Series User’s Manual

4. The DEMOTS.EXE will periodically switch ON/OFF to

ADAM_5056D DO channels so Modbus/TCP OPC Server will
update the ADAM-5051D DI0 status correctly.

5. Run ADAMView Software to monitor the ADAM-5051D DI0 status.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-33

6. The ADAM-5051D DI0 status will be updated correctly in

ADAMView.

DEMOTS.C

#include "mod.h"
#include "5510drv.h"

#define DATASIZE 250
#define sizeofShareMem 4000

int count=0;
unsigned int LocalDIO(void);

int main(void)
{
 SOCKET Sock_5510;
 int err_code;
 unsigned int Share_Mem[sizeofShareMem];
 unsigned int tmpcnt=0;
 int tmpidx;

Chapter 4 Guidelines for Network Functions

4-34 ADAM-5510 Series User’s Manual

 memset(Share_Mem, 0, sizeof(Share_Mem));

 if((err_code=ADAMTCP_ModServer_Create(502, 5000, 7,

 (unsigned char *)Share_Mem,
sizeof(Share_Mem)))!=0) //first step

 {
 adv_printf("error code is %d\n", err_code);
 }

 Timer_Init();
 tmpidx = Timer_Set(1000);
 adv_printf("Server started, wait for connect...\n");
 while(1)
 {
 ADAMTCP_ModServer_Update(); //second step: return 0

NO packet, return 1 has packet

 if(tmArriveCnt[tmpidx])
 {
 Timer_Reset(tmpidx);
 disable();
 Share_Mem[0] = LocalDIO(); //write 5051

status to address 40001
 enable();
 }
 }

 ADAMTCP_ModServer_Release();

 return 0;
}

unsigned int LocalDIO(void) //set Adam-5056&5068 and return Adam-

5051 Status
{
 unsigned div, dov;
 char dov1;

 if(count%2==0)
 {
 dov = 0xffff;
 dov1 = 0x0;

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-35

 }
 else

 {
 dov = 0x0000;
 dov1 = 0xff;
 }

 count++;
 if(count>100)
 count = 1;
 Set5068(&dov1,2,0,AByte); //slot 2
 Set5056(&dov,1,0,AWord); //slot 1

 Get5051(0,0,AWord,&div); //slot 0
 return (unsigned int)~div;
}

Chapter 4 Guidelines for Network Functions

4-36 ADAM-5510 Series User’s Manual

4.5 Modbus/TCP Client

Example program: DEMOTC.EXE
Source file: DEMOTC.C under “Source\Example\DEMOMODBUS”

directory
System configuration:
- ADAM-5510/TCP main unit
- ADAM-6051 with a switch connected to DI0

1. Build DEMOTC.EXE from DEMOTC.PRJ under ”Source\Example\

DemoModbus” directory and download DEMOTC.EXE onto drive
D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-37

2. Run DEMOTC.EXE and you can find the ADAM-6051 DI0 status.

3. Turn off the switch which is connected to ADAM-6051 DI0 and

check the ADAM-5510/TCP can update the DI0 status correctly.

Chapter 4 Guidelines for Network Functions

4-38 ADAM-5510 Series User’s Manual

DEMOTC.C

#include "mod.h"

#define Server_Port 502
#define MAXDATASIZE 100

int main(int argc, char *argv[])
{
 char * ServerIP;
 SOCKET SO_5510;
 unsigned char HostData[MAXDATASIZE];
 int DataByteCount = 0;
 int tmp;
 unsigned int tmpcnt=0, tmpcnt1=0;
 int errcode;

 memset(HostData, MAXDATASIZE, 0);

 if(argc==2)
 {
 ServerIP = argv[1];
 }
 else
 {
 adv_printf("Please input Server IP.\n");
 return 0;
 }

 if(ADAMTCP_Connect(&SO_5510, ServerIP, Server_Port)<=0)
 {
 perror("ADAMTCP_Connect()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

 adv_printf("Starting to send..\n");
 while(1)
 {
 //Query Adam-6051 Server
 if((errcode=ADAMTCP_ReadCoilStatus(&SO_5510, 50, 0x01,
0x01, 0x01, &DataByteCount, HostData))<=0)

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-39

 {
 if(errcode==TCPTimeOut_Err)
 perror("Time Out.\n");
 else
 adv_printf("Error: Error Code is %d\n", errcode);
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }
 else
 {
 adv_printf("Adam-6051 Channel 0 Status: ");
 for(tmp=0; tmp<DataByteCount; tmp++)
 {
 adv_printf("%2X", HostData[tmp]&0x01);
 }
 adv_printf("\n");
 }

 for(tmpcnt=0; tmpcnt<50000; tmpcnt++) //delay
 {for(tmpcnt1=0; tmpcnt1<4; tmpcnt1++){}}

 }

 return 1;
}

Chapter 4 Guidelines for Network Functions

4-40 ADAM-5510 Series User’s Manual

4.6 Modbus/RTU Slave

Example program: DEMORS.EXE
Source file: DEMORS.C under “Source\Example\DEMOMODBUS”

directory
Utility: Modbus/RTU OPC Server and HMI Software on host PC.
ADAM-5510/TCP configuration:
- ADAM-5510/TCP main unit
- ADAM-5051D at slot 0
- ADAM-5056D at slot 1
- ADAM-5068 at slot 2
- ADAM-5017 at slot 3
- Short ADAM-5051D DI0 to ADAM-5056D DO0, DI1 to DO1,…,

DI15 to DO15

1. Build DEMORS.EXE from DEMORS.PRJ under ”Source\Example\

DemoModbus” directory and download DEMORS.EXE onto drive
D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-41

2. Run DEMORS.EXE and ADAM-5056D DO channels will switch

ON/OFF periodically.

3. Click “Launch Terminal” button and ensure COM1 has been

released.

Chapter 4 Guidelines for Network Functions

4-42 ADAM-5510 Series User’s Manual

4. Run Modbus/RTU OPC Server on host PC and check ADAM-

5051D DI0 status.

5. Check ADAM-5051D DI0 status is switching correctly.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-43

6. Run HMI Software on host PC, link to Modbus OPC Server and

check the ADAM-5051D DI0 status.

7. Check ADAM-5051D DI0 status is switching correctly.

Chapter 4 Guidelines for Network Functions

4-44 ADAM-5510 Series User’s Manual

DEMORS.C

#include <stdio.h>
#include <dos.h>
#include <time.h>
#include <conio.h>
#include "5510drv.h"
#include "RTU.h"

#define MAXDATASIZE 100
#define sizeofShareMem 10

int count;
unsigned int LocalDIO(void);

void main()
{
 unsigned int Share_Mem[sizeofShareMem];
 char cCh;
 char LSR_State;
 unsigned int tmpcnt, tmpcnt1;

 if(Modbus_COM_Init(COM1, Slave, (unsigned long)9600,
NO_PARITY, DATA8, STOP1)!=0)
 {
 adv_printf("error\n");
 return;
 }

 adv_printf("init success!!\n");

 if(!ADAMRTU_ModServer_Create(3, (unsigned char *)Share_Mem,
sizeof(Share_Mem)))
 {
 adv_printf("err code is %d\n", Error_Code());
 return;
 }

 adv_printf("server started..\n");

 while(1)
 {

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-45

 disable();
 Share_Mem[0] = LocalDIO(); //write 5051 status to
address 40001
 enable();

 for(tmpcnt=0; tmpcnt<50000; tmpcnt++) //delay
 {for(tmpcnt1=0; tmpcnt1<8; tmpcnt1++){}}

 }

}

unsigned int LocalDIO(void) //set Adam-5056&5068 and return Adam-
5051 Status
{
 unsigned div, dov;
 char dov1;

 if(count%2==0)
 {
 dov = 0xffff;
 dov1 = 0x0;
 }
 else
 {
 dov = 0x0000;
 dov1 = 0xff;
 }

 count++;
 if(count>100)
 count = 1;
 Set5068(&dov1,2,0,AByte); //slot 2
 Set5056(&dov,1,0,AWord); //slot 1

 Get5051(0,0,AWord,&div); //slot 0
 return (unsigned int)~div;
}

Chapter 4 Guidelines for Network Functions

4-46 ADAM-5510 Series User’s Manual

4.7 Modbus/RTU Master

Example program: DEMORC.EXE
Source file: DEMORC.C under “Source\Example\DEMOMODBUS”

directory
System configuration:
- ADAM-5510/TCP main unit
- ADAM-4056S

1. Build DEMORC.EXE from DEMORC.PRJ under ”Source\Example

\DemoModbus” directory and download DEMORC.EXE onto drive
D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-47

2. Run DEMORC.EXE and you will find the connection is successful

as following figure. You will also find the LEDs of ADAM-4056S
periodically switch ON/OFF by the command from DEMORC.EXE

DEMORC.C

#include <stdio.h>
#include <dos.h>
#include <time.h>
#include "RTU.h"

#define MAXDATASIZE 100

void main()
{
 unsigned char HostData[MAXDATASIZE];
 int cnt=0;
 unsigned int tmpcnt=0, tmpcnt1=0;

Chapter 4 Guidelines for Network Functions

4-48 ADAM-5510 Series User’s Manual

 if(Modbus_COM_Init(COM2, Master, (unsigned long)9600,
NO_PARITY, DATA8, STOP1)!=0)

 {
 adv_printf("error\n");
 return;
 }

 adv_printf("init success!!\n");

 while(1)
 {

 cnt++;
 if(cnt%2==0)
 {
 HostData[1]=0x0f;
 HostData[0]=0xff;
 }
 else
 {
 HostData[1]=0x00;
 HostData[0]=0x00;
 }
 if(cnt==10)
 cnt = 0;

 //Set 4056S status
 if(!ADAMRTU_ForceMultiCoils(COM2, 0x01, 0x11, 0x0C,
0x02, HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 adv_printf("Success!!\n");

 for(tmpcnt=0; tmpcnt<50000; tmpcnt++) //delay
 {for(tmpcnt1=0; tmpcnt1<4; tmpcnt1++){}}

 }

}

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-49

4.8 TCP Server

Example program: TSERVER.EXE
Source file: TCP_SERVER.C under “Source\Example\TCP” directory
System configuration:
- ADAM-5510/TCP main unit
- TCP Client program on host PC

1. Build TSERVER.EXE from TSERVER.PRJ under ”Source\

Example\TCP” directory and download TSERVER.EXE onto drive
D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-50 ADAM-5510 Series User’s Manual

2. Run TSERVER.EXE

3. Run TCP Client program and connect to TSERVER.EXE. The

TSERVER.EXE will response “Hello Word!” to TCP Client
program.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-51

4. Type characters and send them out from TCP Client program to

test the TCP connection.

TCP_SERVER.C

#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#else
#include <mem.h>
#endif
#include <string.h>
#include <conio.h>
#include <errno.h>
#include "socket.h"
#define Errno errno

#define FALSE 0
#define TRUE 1
#define Host_Port 5510
#define Max_Conn 40

Chapter 4 Guidelines for Network Functions

4-52 ADAM-5510 Series User’s Manual

#define MAXDATASIZE 100

SOCKET remoteSocket[Max_Conn];
int WaitSocketCount[Max_Conn];
int socketTotal = 0;
int timeoutRelease = FALSE;

void ReleaseClient(int idx_so);

int main(void)
{
 SOCKET Sock_5510, New_Conn;
 struct sockaddr_in Host_addr;
 struct sockaddr_in Client_addr;
 int sin_size;
 int hasConnect, hasMessage;
 int maxSocket, sidx, New_Sidx, numbytes, sidx2;
 char buf[MAXDATASIZE];
 unsigned long pulArgp;
 char *str;
 int tmpcount=1;

 if ((Sock_5510 = socket(AF_INET, SOCK_STREAM, 0)) ==
INVALID_SOCKET)
 {
 perror("socket");
 exit(1);
 }

 Host_addr.sin_family = AF_INET;
 Host_addr.sin_port = htons(Host_Port);
 Host_addr.sin_addr.s_addr = INADDR_ANY;
 memset(&(Host_addr.sin_zero), 0, 8);

 if (bind(Sock_5510, (struct sockaddr *)&Host_addr, sizeof(struct
sockaddr)) == SOCKET_ERROR)
 {
 perror("bind");
 exit(1);
 }

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-53

 pulArgp = 1;
 if(ioctlsocket(Sock_5510, FIONBIO, &pulArgp))

 {
 perror("ioctlsocket");
 exit(1);
 }

 if (listen(Sock_5510, 5) == SOCKET_ERROR)
 {
 perror("listen");
 exit(1);
 }

 hasMessage = FALSE;
 memset(WaitSocketCount, 0, sizeof(WaitSocketCount));
 adv_printf("Server started, wait for connect...\n");
 while(1)
 {
 if (socketTotal > 0)
 hasConnect = Host_WaitForClient(Sock_5510, 0);
 else
 hasConnect = Host_WaitForClient(Sock_5510, 5);

 if(hasConnect)
 {
 adv_printf("Receive client connect request...\n");
 sin_size = sizeof(struct sockaddr_in);
 if ((New_Conn = accept(Sock_5510, (struct sockaddr *)&Client_addr,
 &sin_size)) == INVALID_SOCKET)
 {
 perror("accept");
 continue;
 }

 if (New_Conn != INVALID_SOCKET)
 {
 if (socketTotal < Max_Conn)
 {
 remoteSocket[socketTotal] = New_Conn;
 New_Sidx = socketTotal;

Chapter 4 Guidelines for Network Functions

4-54 ADAM-5510 Series User’s Manual

 socketTotal++;
 }
 else
 {

 if (send(New_Conn, "Connetion full, you are going to be
disconnected!\n", 50, 0) == SOCKET_ERROR)
 perror("send");
 closesocket(New_Conn);
 adv_printf("Connetion full, disconnect client!\n");
 }
 }
 else
 adv_printf("(TCP) Invalid incoming socket!\n");

 str = "Hello, world!\n";
 if (send(remoteSocket[New_Sidx], str, strlen(str), 0) ==
SOCKET_ERROR)
 perror("send");

 }

 if(socketTotal>0)
 {
 for(sidx=0; sidx<socketTotal; sidx++)
 {
 hasMessage = Host_WaitForClient(remoteSocket[sidx], 0);
 if(hasMessage)
 {
 if((numbytes=recv(remoteSocket[sidx], buf, sizeof(buf), 0)) ==
SOCKET_ERROR)
 {
 ReleaseClient(sidx);
 }
 else
 {

 if(numbytes>0)
 adv_printf("Server receive: %s", buf);

 if(tmpcount%2==0)

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-55

 str = "ACK\n";
 else
 str = "A C K\n";

 if(numbytes==0)

 {
 ReleaseClient(sidx);
 }
 else if(send(remoteSocket[sidx], str, strlen(str), 0) ==
SOCKET_ERROR)
 {
 ReleaseClient(sidx);
 }

 memset(buf, 0, sizeof(buf));
 tmpcount++;
 if(tmpcount>100)
 tmpcount = 1;

 WaitSocketCount[sidx] = 0;
 }
 }
 else
 WaitSocketCount[sidx]++;

 if(WaitSocketCount[sidx]>10000)
 {
 timeoutRelease = TRUE;
 ReleaseClient(sidx);
 }

 }
 }
 }

 return 0;
}

int Host_WaitForClient(int WaitSocket, int i_iWaitMilliSec)
{

Chapter 4 Guidelines for Network Functions

4-56 ADAM-5510 Series User’s Manual

 fd_set FdSet;
 struct timeval waitTime;

 FD_ZERO(&FdSet);
 FD_SET(WaitSocket, &FdSet);
 waitTime.tv_sec = i_iWaitMilliSec / 1000;
 waitTime.tv_usec = (i_iWaitMilliSec % 1000)*1000L;

 if (select(0, &FdSet, NULL, NULL, &waitTime) > 0)
 return TRUE;
 return FALSE;
}

void ReleaseClient(int idx_so)
{
 int sidx, sidx2;

 sidx = idx_so;

 if(timeoutRelease)
 {
 if (send(remoteSocket[sidx], "Connetion timeout, you are going to be
disconnected!\n", 53, 0) == -1)
 perror("send");
 }

 if(remoteSocket[sidx]!=INVALID_SOCKET)
 {
 if(closesocket(remoteSocket[sidx])!=0)
 adv_printf("Release client resource fail!");
 }

 for(sidx2 = sidx; sidx2<= socketTotal-1; sidx2++)
 {
 if(sidx2<socketTotal-1)
 {
 WaitSocketCount[sidx2] = WaitSocketCount[sidx2+1];
 remoteSocket[sidx2] = remoteSocket[sidx2+1];
 }
 else if(sidx2==socketTotal-1)
 {

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-57

 WaitSocketCount[sidx2] = 0;
 remoteSocket[sidx2] = NULL;
 }

 }

 socketTotal--;

 if(timeoutRelease)
 adv_printf("Connetion timeout, disconnect client %d!\n", sidx);
 else
 adv_printf("Socket error, disconnect client %d!\n", sidx);

 if(socketTotal==0)
 adv_printf("Wait for client connect...\n");

 timeoutRelease = FALSE;

}

TCP Client program on host PC

Private Sub Command1_Click()
' Invoke the Connect method to initiate a
' connection.
tcpClient.Connect
End Sub

Private Sub Command2_Click()
End
End Sub

Private Sub Form_Load()
' The name of the Winsock control is tcpClient.
' Note: to specify a remote host, you can use
' either the IP address (ex: "121.111.1.1") or
' the computer's "friendly" name, as shown here.
tcpClient.RemoteHost = "192.168.1.4"
tcpClient.RemotePort = 5510

End Sub

Chapter 4 Guidelines for Network Functions

4-58 ADAM-5510 Series User’s Manual

Private Sub Text1_Change()
tcpClient.SendData Text1.Text

End Sub
Private Sub tcpClient_DataArrival _
(ByVal bytesTotal As Long)
Dim strData As String
tcpClient.GetData strData
Text2.Text = strData
End Sub

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-59

4.9 TCP Client

Example program: TCLIENT.EXE
Source file: TCP_CLIENT.C under “Source\Example\TCP” directory
System configuration:
- ADAM-5510/TCP main unit
- TCP Server program on host PC

1. Build TCLIENT.EXE from TCLIENT.PRJ under ”Source\Example\

TCP” directory and download TCLIENT.EXE onto drive D under
“WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-60 ADAM-5510 Series User’s Manual

2. Run TCP Server program on host PC and then run TCLIENT.EXE

to connect to TCP Server program.

3. Type characters and send them out from TCP Server program to

test the TCP connection. You will find TCLIENT.EXE receive the
characters and reply ACK message.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-61

TCP_CLIENT.C

#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#else
#include <mem.h>
#endif
#include <string.h>
#include <conio.h>
#include <errno.h>
#include "socket.h"
#define Errno errno

#define Server_Port 5510
#define MAXDATASIZE 100

int main(int argc, char *argv[])
{
 SOCKET SO_5510;
 int numbytes=0;
 char buf[MAXDATASIZE];
 struct hostent *he;
 struct sockaddr_in Server_addr;
 char *str1, *str2, *str;
 int tmpcount=1;

 str1 = "TCP\n";
 str2 = "Client\n";

 if (argc != 2)
 {
 fprintf(stderr,"usage: server hostname\n");
 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL)
 {
 perror("gethostbyname");
 exit(1);
 }

Chapter 4 Guidelines for Network Functions

4-62 ADAM-5510 Series User’s Manual

 if ((SO_5510 = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) ==
INVALID_SOCKET)
 {
 perror("socket");
 exit(1);
 }

 Server_addr.sin_family = AF_INET;
 Server_addr.sin_port = htons(Server_Port);
 Server_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(&(Server_addr.sin_zero), 0, 8);

 if (connect(SO_5510, (struct sockaddr *)&Server_addr,
 sizeof(struct sockaddr)) == SOCKET_ERROR)
 {
 perror("connect");
 exit(1);
 }

 while(1)
 {
 if ((numbytes=recv(SO_5510, buf, MAXDATASIZE-1, 0)) ==
SOCKET_ERROR)
 {
 perror("recv");
 exit(1);
 }

 if(numbytes>0)
 {
 adv_printf("Received: %s",buf);

 memset(buf, 0, sizeof(buf));
 if(tmpcount%2==0)
 str = str1;
 else
 str = str2;

 sleep(1);
 if (send(SO_5510, str, strlen(str), 0) == SOCKET_ERROR)

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-63

 {
 perror("send");
 exit(1);
 }
 tmpcount++;
 if(tmpcount>100)
 tmpcount=1;
 }
 else
 {
 closesocket(SO_5510);
 break;
 }
 }
 return 0;
}

TCP Server program on host PC

Private Sub Command1_Click()
End
End Sub

Private Sub Form_Load()
' Set the LocalPort property to an integer.
' Then invoke the Listen method.
tcpServer.LocalPort = 5510
tcpServer.Listen
Form1.Show ' Show the client form.
End Sub

Private Sub tcpServer_ConnectionRequest _
(ByVal requestID As Long)
' Check if the control's State is closed. If not,
' close the connection before accepting the new
' connection.
If tcpServer.State <> sckClosed Then _
tcpServer.Close
' Accept the request with the requestID
' parameter.
tcpServer.Accept requestID
End Sub

Chapter 4 Guidelines for Network Functions

4-64 ADAM-5510 Series User’s Manual

Private Sub Text1_Change()
' The TextBox control named txtSendData
' contains the data to be sent. Whenever the user
' types into the textbox, the string is sent
' using the SendData method.
tcpServer.SendData Text1.Text
End Sub

Private Sub tcpServer_DataArrival _
(ByVal bytesTotal As Long)
' Declare a variable for the incoming data.
' Invoke the GetData method and set the Text
' property of a TextBox named txtOutput to
' the data.
Dim strData As String
tcpServer.GetData strData
Text2.Text = strData
End Sub

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-65

4.10 UDP Connection

Example program: USERVER.EXE
Source file: UDP_SERVER.C under “Source\Example\TCP” directory
System configuration:
- ADAM-5510/TCP main unit
- UDP program on host PC

1. Build USERVER.EXE from USERVER.PRJ under ”Source\

Example\TCP” directory and download USERVER.EXE onto drive
D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-66 ADAM-5510 Series User’s Manual

2. Run USERVER.EXE

3. Run UDP program on host PC. Type characters and send them

out to test the UDP connection. You will find USERVER.EXE
receive the characters and reply ACK message.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-67

UDP_SERVER.C

#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#else
#include <mem.h>
#endif
#include <string.h>
#include <conio.h>
#include <errno.h>
#include "socket.h"

#define Errno errno

#define FALSE 0
#define TRUE 1
#define Host_Port 5510
#define MAXBUFLEN 100

int main(void)
{
 SOCKET Host_Sock;
 struct sockaddr_in Host_addr;
 struct sockaddr_in Client_addr;
 int hasMessage = FALSE;
 unsigned long pulArgp;
 char buf[MAXBUFLEN];
 int addr_len, numbytes;
 char* ackmsg = "ACK";

 if ((Host_Sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP))
== INVALID_SOCKET)
 {
 perror("socket");
 exit(1);
 }

 Host_addr.sin_family = AF_INET;
 Host_addr.sin_port = htons(Host_Port);

Chapter 4 Guidelines for Network Functions

4-68 ADAM-5510 Series User’s Manual

 Host_addr.sin_addr.s_addr = INADDR_ANY;
 memset(&(Host_addr.sin_zero), 0, 8);

 if (bind(Host_Sock, (struct sockaddr *)&Host_addr, sizeof(struct
sockaddr)) == SOCKET_ERROR)
 {
 perror("bind");
 exit(1);
 }

 pulArgp = 1;
 if(ioctlsocket(Host_Sock, FIONBIO, &pulArgp))
 {
 perror("ioctlsocket");
 exit(1);
 }

 adv_printf("wait for client send message...\n");

 while(1)
 {

 hasMessage = Host_WaitForMessage(Host_Sock, 0);

 if(hasMessage)
 {
 addr_len = sizeof(struct sockaddr);
 if ((numbytes = recvfrom(Host_Sock, buf, sizeof(buf), 0,
 (struct sockaddr *)&Client_addr, &addr_len)) ==
SOCKET_ERROR)
 {
 perror("recvfrom");
 if (errno == EWOULDBLOCK)
 adv_printf("EWOULDBLOCK");
 break;
 }
 buf[numbytes] = 0;
 adv_printf("got packet \"%s\" from %s\n", buf,
inet_ntoa(Client_addr.sin_addr));

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-69

 if ((numbytes=sendto(Host_Sock, ackmsg, strlen(ackmsg), 0,

 (struct sockaddr *)&Client_addr, sizeof(struct sockaddr))) ==
SOCKET_ERROR)
 {
 perror("sendto");
 break;
 }
 }
 }

 closesocket(Host_Sock);
 return 0;
}

int Host_WaitForMessage(int serverSocket, int i_iWaitMilliSec)
{
 fd_set FdSet;
 struct timeval waitTime;

 FD_ZERO(&FdSet);
 FD_SET(serverSocket, &FdSet);
 waitTime.tv_sec = i_iWaitMilliSec / 1000;
 waitTime.tv_usec = (i_iWaitMilliSec % 1000)*1000L;

 if (select(0, &FdSet, NULL, NULL, &waitTime) > 0)
 return TRUE;
 return FALSE;
}

UDP program on host PC

Private Sub Command1_Click()
End
End Sub

Private Sub Form_Load()
' The control's name is udpPeerA
With udpPeerA
' IMPORTANT: be sure to change the RemoteHost
' value to the name of your computer.
.RemoteHost = "192.168.1.4"
.RemotePort = 5510 ' Port to connect to.

Chapter 4 Guidelines for Network Functions

4-70 ADAM-5510 Series User’s Manual

.Bind 5510 ' Bind to the local port.
End With
Form1.Show ' Show the second form.
End Sub

Private Sub Text1_Change()
' Send text as soon as it's typed.
udpPeerA.SendData Text1.Text
End Sub

Private Sub udpPeerA_DataArrival _
(ByVal bytesTotal As Long)
Dim strData As String
udpPeerA.GetData strData
Text2.Text = strData
End Sub

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-71

Example program: UCLIENT.EXE
Source file: UDP_CLIENT.C under “Source\Example\TCP” directory
System configuration:
- ADAM-5510/TCP main unit
- UDP program on host PC

1. Build UCLIENT.EXE from UCLIENT.PRJ under ”Source\Example\

TCP” directory and download UCLIENT.EXE onto drive D under
“WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-72 ADAM-5510 Series User’s Manual

2. Run UDP program on host PC and then run UCLIENT.EXE to

connect to the UDP program. You will find the UDP program
receives “UDP Client Connected!” from UCLIENT.EXE

3. Type a character and send it out from UDP program to test the

UDP connection. You will find UCLIENT.EXE receive the
character correctly.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-73

UDP_CLIENT.C

#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
#include <malloc.h>
#else
#include <mem.h>
#endif
#include <string.h>
#include <conio.h>
#include <errno.h>
#include "socket.h"
#define Errno errno
#define BufferSize 100
#define Host_Port 5510

int main(int argc, char *argv[])
{
 SOCKET SO_5510;
 struct sockaddr_in Server_addr;
 struct sockaddr_in From_Addr;
 struct hostent *he;
 char buf[BufferSize];
 int numbytes;
 unsigned int From_Size;
 char* msg = "UDP Client Conneted!";

 if (argc != 2)
 {
 fprintf(stderr,"usage: uclient xxx.xxx.xxx.xxx\n");
 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL)
 {
 perror("gethostbyname");
 exit(1);
 }

Chapter 4 Guidelines for Network Functions

4-74 ADAM-5510 Series User’s Manual

 if ((SO_5510 = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) ==
INVALID_SOCKET)

 {
 perror("socket");
 exit(1);
 }

 Server_addr.sin_family = AF_INET;
 Server_addr.sin_port = htons(Host_Port);
 Server_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(&(Server_addr.sin_zero), 0, 8);

 if ((numbytes=sendto(SO_5510, msg, strlen(msg), 0,
 (struct sockaddr *)&Server_addr, sizeof(struct sockaddr))) ==
SOCKET_ERROR)
 {
 perror("sendto");
 exit(1);
 }

 adv_printf("sent %d bytes to %s\n", numbytes,
inet_ntoa(Server_addr.sin_addr));

 From_Size = sizeof(From_Addr);
 if ((numbytes = recvfrom(SO_5510, buf, sizeof(buf), 0,
 (struct sockaddr *)&From_Addr, &From_Size)) == -1)
 {
 perror("recvfrom");
 exit(1);
 }
 buf[numbytes] = 0;
 adv_printf("got Ack packet \"%s\" from %s\n", buf,
inet_ntoa(From_Addr.sin_addr));

 closesocket(SO_5510);

 return 0;
}

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-75

4.11 FTP Client

Utility: FTP.EXE
System configuration:
- ADAM-5510/TCP main unit

1. Download FTP.EXE onto drive D under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

4-76 ADAM-5510 Series User’s Manual

2. Run FTP.EXE, login to FTP Server and get file from FTP Server.

3. Check the file is under “WEBROOT” directory.

Chapter 4 Guidelines for Network Functions

ADAM-5510 Series User’s Manual 4-77

4. Run FTP.EXE, login to FTP Server and put the file

“WEBADAM.HTM” under “WEBROOT” directory onto FTP Server.

5
Programming and Function Library

Chapter 5 Programming and Function Library

5-2 ADAM-5510 Series User’s Manual

5.1 Introduction

User-designed ADAM-5510 Series application programs make use of
ADAM-5510 Series library functions. To make the most efficient use of
ADAM-5510 Series’ memory space, the ADAM-5510 Series function
library has been separated into 10 smaller libraries. Therefore, a user
can link only those libraries needed to run his application, and only
those libraries will be included in the compiled executable. The
smaller the linked libraries, the smaller the compiled executable will be.

5.1.1 Programming detail about the ADAM-5510 Series Controller

The operating system of ADAM-5510 Series Controller is ROM-DOS,
which is a MS-DOS equivalent system. It allows users to run
application programs written in assembly language as well as high-
level languages such as C or C++. Certainly, there will be some
limitations when running application programs in the ADAM-5510
Series Controller. In order to build successful applications, please
keep the following limitations and concerns in mind.

5.1.2 Mini BIOS functions

The ADAM-5510 Series Controller provides up to four serial
communication ports including programming port for connecting
peripherals, so the mini BIOS of ADAM-5510 Series Controller only
provides 10 function calls. Since the user’s program cannot use other
BIOS function calls, the ADAM-5510 Series Controller may not work
as intended. Additionally, certain language compilers such as QBASIC
directly call BIOS functions that are not executable in ADAM-5510
Series Controller. The ADAM-5510 Series Controller mini BIOS
function calls are listed in the following table.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-3

Function Sub-function Task
07h 186 or greater cd-processor esc instruct
10h 0eh TTY Clear output
11h Get equipment
12h Get memory size
15h 87h Extended memory read

 88h Extended memory size
 c0h PS/2 or AT style A20 Gate table

16h 0 Read TTY char
 1 Get TTY status
 2 Get TTY flags

18h Print "Failed to BOOT ROM-DOS"
message

19h Reboot system
1ah 0 Get tick count

 1 Set tick count
 2 Get real time clock
 3 Set real time clock
 4 Get data
 5 Set data

1ch Timer tick

Table 5-1: ADAM-5510 Series Controller mini BIOS function calls

5.1.3 Converting program codes

The ADAM-5510 Series Controller has an 80188 CPU. Therefore,
programs downloaded into its flash ROM must be converted into
80186 or 80188 compatible codes firstly, and the floating point
operation must be set to Emulation Mode”. For example, if you
develop the application program in Borland C, you will compile the
program as following picture.

Chapter 5 Programming and Function Library

5-4 ADAM-5510 Series User’s Manual

Figure 5-1: Select “Advanced code generation”

Figure 5-2: Select “Emulation” and “80186” settings

5.1.4 Libraries Sized for Different Memory Modes

The ADAM-5510 Series function libraries support four memory models:
SMALL, MEDIUM, COMPACT and LARGE. You can use library files
sized according to your memory model. For example, if you use small
model you can link UTILITYS.LIB and LIOS.LIB to implement system
and low speed I/O module access functions. On the other hand, if you
use large model, you can link UTILITYL.LIB and LIOL.LIB.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-5

Figure 5-3: Select “Code generation”

Figure 5-4: Select “Small” Model while using *S.LIB

5.1.5 Limitations

Certain critical files are always kept in flash ROM, such as operating
system, BIOS, and monitoring files. The ADAM-5510 Series Controller
provides an additional 1MB flash disk as drive D. There is up to
960KB free space for user’s application program. As some additional
system files and network utilities for ADAM-5510/TCP and ADAM-
5510E/TCP are distributed on drive D, the free space for user’s
application program should be less than 960KB. Besides, there are
256KB flash memory and up to 384KB battery backup SRAM for
user’s applications which can be accessed by function library.

Chapter 5 Programming and Function Library

5-6 ADAM-5510 Series User’s Manual

Warning: The free space of flash disk is not suitable for

frequently creating and deleting files such as periodic
data logging application because the DOS FAT file
system is probably destroyed by critical operations
while the disk is almost full. The better way is to take
the operations on battery backup SRAM.

5.1.6 Programming the watchdog timer

The ADAM-5510 Series Controller is equipped with a watchdog timer
function that resets the CPU or generates an interrupt if processing
comes to a standstill for any reason. This feature increases system
reliability in industrial standalone and unmanned environments.

If you decide to use the watchdog timer, you must write a function call
to enable it. When the watchdog timer is enabled, it must be cleared
by the application program at intervals of less than 1.6 seconds. If it is
not cleared at the required time intervals, it will activate and reset the
CPU, or generate a NMI (Non-Maskable Interrupt). You can use a
function call in your application program to clear the watchdog timer.
At the end of your program, you still need a function call to disable the
watchdog timer.

5.2 Category of Function Libraries

ADAM-5510 Series Controller has 10 categories of function libraries
as following:

- Category A. System Functions (UTILITY*.LIB)
- Category B. Low Speed AI Module Functions (LAI*.LIB)
- Category C. High Speed I/O and Counter/Frequency Module

Functions (HIO*.LIB)
- Category D. Communication Functions (COMM*.LIB)
- Category E. Serial Module Functions (A5090*.LIB)
- Category F. MODBUS/RTU Functions (MBRTU*.LIB and

MBRTU9*.LIB)
- Category G. MODBUS/TCP Functions (MBTCP*.LIB)
- Category H. Socket Functions (SOCKET*.LIB)
- Category I. HTTP Functions (CGI_LIB*.LIB)

Note 1: These function libraries support Borland C 3.0 for DOS only.
Note 2: Please include all necessary ADAM-5510 Series function

libraries in your project file.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-7

Note 3: The ADAM-5510 Series function libraries, which come with

ADAM CD version 2.20 or later, support 8 slot and 4 slot main
units, i.e., ADAM-5510E, ADAM-5510E/TCP, ADAM-5510M
and ADAM-5510/TCP simultaneously. So if you have already
used ADAM-5510M and would like to use 8 slot main unit
such as ADAM-5510E in your system, it is strongly
recommended that you build your projects for both ADAM-
5510M and ADAM-5510E by linking latest function libraries on
ADAM CD version 2.20 or later. Just keep one version of
function libraries for all ADAM-5510 Series Controllers will
simplify the maintenance.

5.3 Library Index

5.3.1 Category A. System Functions: (UTILITY*.LIB)

ADAMdelay
Get_BoardID
Get_NodeID
GetRTCtime
SetRTCtime
LED_init
LED_OFF
LED_ON
ProgramByte
ProgramSector
EraseSector
Get_SysMem
Set_SysMem
read_mem
Get_NVRAM_Size
Set_NVRAM_Size
Timer_Init
Timer_Reset
Timer_Set
Release_All
tmArriveCnt
WDT_clear
WDT_disable
WDT_enable
write_backup_ram
read_backup_ram
adv_printf()

Chapter 5 Programming and Function Library

5-8 ADAM-5510 Series User’s Manual

5.3.2 Category B. Low Speed AI Module Functions (LAI*.LIB)

AiUpdate()
Init5013()
Get5013()
GetRange5013()
Init501718()
Get501718()
GetRange501718()

5.3.3 Category C. High Speed I/O and Counter/Frequency Module
Functions (HIO*.LIB)

Init5017H()
GetRange5017H()
Get5017H()
Init5024()
Set5024()
GetRange5024()
Get5050()
Get5051()
Get5052()
Get5055()
Set5050()
Set5055()
Set5056()
Set5060()
Set5068()
Set5069()
InitDIFilter()
Init5080()
Get5080()
Clear_Counter()
Start_Stop_Counter()
ReadOverflowFlag()
SetInitCounterVal()
GetRange5080()
SetRange5080()

5.3.4 Category D. Communication Functions: (COMM*.LIB)

checksum()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-9

RS-485 Port (COM2) Functions
com_485_install()
com_485_deinstall()
com_485_set_format()
com_485_set_speed()
com_485_flush_rx()
com_485_flush_tx()
com_485_rx()
com_485_rx_empty()
com_485_tx()
com_485_tx_string()
com_485_tx_empty()

Program Port (COM3) Functions
com_pgm_install()
com_pgm_deinstall()
com_pgm_flush_rx()
com_pgm_flush_tx()
com_pgm_rx()
com_pgm_rx_empty()
com_pgm_set_format()
com_pgm_set_speed()
com_pgm_tx()
com_pgm_tx_empty()
com_pgm_tx_string()

RS-232/485 Port (COM1) Functions

Note: For ADAM-5510M and ADAM-5510/TCP, COM1 supports RS-232 only.

The following library functions support RS-485 automatic data flow control.
So it is not necessary for users to take care of the control of data flow
direction.

com_install()
com_deinstall()
com_set_format()
com_set_parity()
com_set_speed()
com_rx()
com_tx()
com_rx_empty(), com_tx_empty()
com_tx_ready()
com_tx_string()
com_flush_rx(), com_flush_tx()

Chapter 5 Programming and Function Library

5-10 ADAM-5510 Series User’s Manual

com_carrier()
com_clear_break(), com_set_break()
com_clear_local_loopback(),com_set_local_loopback()
com_disable_fifo(), com_enable_fifo()
com_get_line_status(), com_set_line_params(),
com_lower_dtr(), com_raise_dtr()
com_lower_rts(), com_raise_rts()
com_read_scratch_register(), com_write_scratch_register()
CRC16()
com_get_modem_status()
modem_autoanswer()
modem_command_state()
modem_command()
modem_dial()
modem_handup()
modem_initial()

RS-232/485 Port (COM4) Functions
com_232_485_install()
com_232_485_deinstall()
com_232_485_set_format()
com_232_485_set_speed()
com_232_485_flush_rx()
com_232_485_flush_tx()
com_232_485_rx()
com_232_485_rx_empty()
com_232_485_tx()
com_232_485_tx_string()
com_232_485_tx_empty()

5.3.5 Category E. Serial Module Functions (A5090*.LIB)

For ADAM-5090 Serial COM Ports:
port_install()
port_deinstalled()
port_select()
reset_slot()
port_reset()
which_has_been_installed()
port_set_speed()
port_set_format()
port_disable_fifo()
port_enable_fifo()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-11

port_carrier()
port_clear_break()
port_set_break()
port_clear_local_loopback()
port _set_local_loopback()
port_get_line_status()
port_set_line_params()
port_get_modem_status()
port_get_modem_control_status()
port_set_modem_control_params()
port_lower_dtr()
port_raise_dtr()
port_raise_rts()
port_lower_rts()
modem_initial_90()
modem_command_90()
modem_command_state_90()
modem_autoanswer_90()
modem_dial_90()
modem_handup_90()
port_flush_rx()
port_flush_tx()
port_rx_error()
port_rx_ready()
char port_rx()
port_tx_empty()
port_tx()
port_tx_string()

5.3.6 Category F. MODBUS/RTU Functions (MBRTU*.LIB and

MBRTU9*.LIB)

For ADAM-5510 Series COM Ports:
Modbus_COM_Init()
Modbus_COM_Release()
Error_Code()
ADAMRTU_ForceMultiCoils()
ADAMRTU_ForceSingleCoil()
ADAMRTU_PresetMultiRegs()
ADAMRTU_PresetSingleReg()
ADAMRTU_ReadCoilStatus()
ADAMRTU_ReadHoldingRegs()

Chapter 5 Programming and Function Library

5-12 ADAM-5510 Series User’s Manual

ADAMRTU_ReadInputRegs()
ADAMRTU_ReadInputStatus()
ADAMRTU_ModServer_Create()
Ver_RTU_Mod()

For ADAM-5090 Serial COM Ports:
Error_Code()
Modbus_5090_Init()
Modbus_5090_Release()
A5090_RTU_ForceMultiCoils()
A5090_RTU_ForceSingleCoil()
A5090_RTU_PresetMultiRegs()
A5090_RTU_PresetSingleReg()
A5090_RTU_ReadCoilStatus()
A5090_RTU_ReadHoldingRegs()
A5090_RTU_ReadInputRegs()
A5090_RTU_ReadInputStatus()

5.3.7 Category G. MODBUS/TCP Functions (MBTCP*.LIB)

Ver_TCP_Mod()

Modbus TCP Client Functions:
ReturnErr_code()
ADAMTCP_Connect()
ADAMTCP_Disconnect()
ADAMTCP_ForceMultiCoils()
ADAMTCP_ForceSingleCoil()
ADAMTCP_PresetMultiRegs()
ADAMTCP_PresetSingleReg()
ADAMTCP_ReadCoilStatus()
ADAMTCP_ReadHoldingRegs()
ADAMTCP_ReadInputRegs()
ADAMTCP_ReadInputStatus()

Modbus TCP Server Functions:
ADAMTCP_ModServer_Create()
ADAMTCP_ModServer_Update()
ADAMTCP_ModServer_Release()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-13

5.3.8 Category H. Socket Functions (SOCKET*.LIB)

Socket function:
accept ()
bind ()
closesocket ()
connect ()
ioctlsocket ()
getpeername ()
getsockname ()
getsockopt ()
htonl ()
htons ()
inet_addr ()
inet_ntoa ()
listen ()
ntohl ()
ntohs ()
recv ()
recvfrom ()
select ()
send ()
sendto ()
setsockopt ()
shutdown ()
socket ()

Database function:
gethostbyaddr()
gethostbyname()
gethostname ()
getservbyport()
getservbyname()
getprotobynumber()
getprotobyname()

Chapter 5 Programming and Function Library

5-14 ADAM-5510 Series User’s Manual

5.3.9 Category I. HTTP Functions (CGI_LIB*.LIB)

Socket function:
HttpRegister()
HttpDeRegister()
HttpGetData()
HttpSendData()
HttpSubmitFile()
HttpGetStatus()
HttpGetVersion()
GetStackPointer()
GetStackSegment()
SetStackPointer()
SetStackSegment()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-15

5.4 Function Library Description

5.4.1 System Functions (UTILITY*.LIB)

ADAMdelay

Syntax:
void ADAMdelay(unsigned short msec)

Description:
Delays program operation by a specified number of milliseconds.

Parameter Description
msec From 0 to 65535.

Return value:
None.

Example:
#include "5510drv.h"
void main(void)
{

/* codes placed here by user */
ADAMdelay(1000); /* delay 1 sec. */
/* codes placed here by user */

}

Remarks:
ADAMDelay will possibly decrease the performance so it is
recommended to use for loop instead.

Chapter 5 Programming and Function Library

5-16 ADAM-5510 Series User’s Manual

Get_BoardID

Syntax:
unsigned char Get_BoardID(int Board)

Description:
Gets the type identification of the I/O module in a controller slot.

Parameter Description
Int Board The slot number of an ADAM-5510 SERIES,

from 0 to 7.

Return value:

The return values are:

I/O Module name Return Value
ADAM-5017 ADAM5017_ID
ADAM-5018 ADAM5018_ID
ADAM-5017H ADAM5017H_ID

ADAM-5013 ADAM5013_ID

ADAM-5080 ADAM5080_ID

ADAM-5052 ADAM5052_ID

ADAM-5050 ADAM5050_ID

ADAM-5051 ADAM5051_ID

ADAM-5056 ADAM5056_ID

ADAM-5060 ADAM5060_ID

ADAM-5068 ADAM5068_ID

ADAM-5069 ADAM5069_ID

ADAM-5024 ADAM5024_ID

Remarks:
None

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-17

Get_NodeID

Syntax:
unsigned char Get_NodeID(void)

Description:
Gets the DIP switches number of the ADAM-5510 SERIES Controller.

Parameter Description
None.

Return value:
The DIP switches number of the ADAM-5510 SERIES Controller.

Example:
#include "5510drv.h"
unsigned char SystemNodeNumber;
unsigned char IOModuleName, SlotNumber;
void main(void)
{
 SystemNodeNumber = Get_NodeID();
 if(SystemNodeNumber == 0x15)
 {
 /* Read IO module name in Slot 0*/
 SlotNumber = 0;
 IOModuleName = Get_BoardID(SlotNumber);
 if(IOModuleName == ADAM5051_ID)
 {
 /* IO Board is current, put your code in Here*/
 }
 else
 {
 adv_printf("\nThe IO Board is NOT ADAM5051");
 adv_printf("\nPlease Check your system setup");
 }
 }
 else
 adv_printf("\nNode number Error!");
}
Remarks :
None

Chapter 5 Programming and Function Library

5-18 ADAM-5510 Series User’s Manual

GetRTCtime
SetRTCtime

Syntax:
unsigned char GetRTCtime(unsigned char Time)
void SetRTCtime(unsigned char Time,unsigned char data)

Description:
GetRTCtime: Reads Real-Time Clock chip timer. A user can activate
a program on the date desired.
SetRTCtime: Sets date and time of the real-time clock.

Parameter Description
Time RTC_sec the second

RTC_min the minute
RTC_hour the hour
RTC_day the day
RTC_week day of the week
RTC_month the month
RTC_year the year
data New contents.

Return value:
The value requested by the user.

Example:
#include "5510drv.h"
void main(void)
{unsigned char sec=0,min=0,hour=12;

adv_printf("Time %02d:%02d:%02d\n",GetRTCtime(RTC_hour),
GetRTCtime(RTC_min), GetRTCtime(RTC_sec));
adv_printf("Set current time 12:00:00\n");
SetRTCtime(RTC_sec,sec);
SetRTCtime(RTC_min,min);
SetRTCtime(RTC_hour,hour);
adv_printf("Time %02d:%02d:%02d\n",GetRTCtime(RTC_hour),
GetRTCtime(RTC_min), GetRTCtime(RTC_sec));

}
Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-19

LED_init
LED_OFF
LED_ON

Syntax:
void LED_init(void)
void LED_OFF(int which_led)
void LED_ON(int which_led)

Description:
Turns LED lights on and off. The LED I/O port must be initialized first.
It will take a little time for the light to stabilize following the signal for
the turning on and turning off of the light.

Parameter Description
which_led PWR

RUN
COMM

Return value:
None.

Example:
#include "5510drv.h"
void main(void)
{

LED_init();
/* flash COMM led */
while(1)
{

LED_ON(COMM);
ADAMdelay(500);
LED_OFF(COMM);

}
}
Remarks:
None.

Chapter 5 Programming and Function Library

5-20 ADAM-5510 Series User’s Manual

ProgramByte
ProgramSector
EraseSector

Syntax:
BOOL EraseSector(unsigned long ulBase)
BOOL ProgramByte(unsigned long ulAddress, BYTE byte)
BOOL ProgramSector(unsigned long ulAddress_s, unsigned char far
* SECTOR_DATA)

Description:
EraseSector : Erases a 64 KB sector of data in the 256 KB Flash

memory
ProgramByte : Programs a byte of information into the 256 KB Flash

memory.
This feature supports data-logging or mass
information storage.

ProgramSector : Programs an entire 32 KB sector of data of the global
variable, SECTOR_DATA[], into 256 KB Flash
memory.

Parameter Description
ulBase User-determined address range to be erased,

taken from addresses in the range 0x80000L to
0xB0000L.

ulAddress User–determined destination address for byte
transfer, taken from the range 0x80000L to
0xBFFFFL.

ulAddress_s User-determined destination address in the Flash
memory, taken from addresses in the range
0x80000L to 0xB8000L.

SECTOR_DATA Pointer at the starting address in the origin memory
of the user's data array.

Return value:
TRUE Successful transfer to Flash memory.
FALSE Error (destination already occupied, excess address range, or

program error).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-21

read_mem

Syntax:
unsigned char read_mem (int memory_segment , unsigned int i)

Description:
Reads far memory data, 256 KB Flash memory, from 0x80000L to
0xBFFFFL, where (the Absolute Address) = (SEG*16 + OFFSET). For
example, (0x800FFL) = (0x8000*16 + 0x00FF).

Parameter Description
memory_segment User-determined address taken from the range

0x8000 to 0xBF00.
i Offset for use in location of memory taken from

the range 0x0000 to 0x0FFF.

Return value:
The value in memory storage at the indicated address.

Example:
#include "5510drv.h"
void main(void)
{

unsigned char sector[32768];
unsigned char data;
unsigned long addr,sector_num;
unsigned int i;

adv_printf("erase sector 0x80000L\n");
if(EraseSector(0x80000L))

adv_printf("erase succeed \n");
adv_printf("Write data(55) to 0x80000~0x80001\n");
data=55;
ProgramByte(0x80000L,data);
ProgramByte(0x80000L+1,data);
ProgramByte(0x80000L+2,data);
for(i=0;i<3;i++)
{
adv_printf("read%d data=%d\n",i,read_mem(0x8000,0x0000+i));

Chapter 5 Programming and Function Library

5-22 ADAM-5510 Series User’s Manual

}
adv_printf("erase sector 0x80000L\n");
if(EraseSector(0x80000L))

adv_printf("erase succeed \n");
data = 1;
for(i=0;i<32768;i++)

 *(sector+i)=data;
adv_printf("Write data(0x01) to 0x80000~0x87FFF\n");
ProgramSector(0x80000,§or);
for(i=0;i<100;i++)
{
adv_printf("read%d data=%d\n",i,read_mem(0x8000,0x0000+i));
}

}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-23

Get_SysMem
Set_SysMem

Syntax:
unsigned char Get_SysMem(unsigned char which_byte)
void Set_SysMem(unsigned char which_byte, unsigned char data)

Description:
Get_SysMem: Reads a byte from security SRAM.
Set_SysMem: Writes a byte to security SRAM. Security SRAM

supports 113 bytes for user storage of important
information.

Parameter Description
which_byte From 0 to 112, user-determined.
data Value to be saved.

Return value:
The value in a byte of security SRAM.

Example:
#include "5510drv.h"
void main(void)
{
 unsigned char data[4] = {1,2,3,4};
 int i;
 /* save current value */
 for(i=10;i < 14;i++)
 {
 Set_SysMem(i, data[i-10]);
 adv_printf("data=%d\n",Get_SysMem(i));
 }
}

Remarks:
None

Chapter 5 Programming and Function Library

5-24 ADAM-5510 Series User’s Manual

Get_NVRAM_Size
Set_NVRAM_Size

Syntax:
unsigned char Get_NVRAM_Size(void)
void Set_NVRAM_Size(unsigned char sector)

Description:
Gets the size of battery backup RAM.
Sets the size of battery backup RAM.
(The unit is sectors, each sector is 4KB in size. Maximum size is 384
KB theoretically.)

Parameter Description
sector NVRAM size in 4 KB sectors, from 1 to 96 sectors.

Return value:
Get_NVRAM_Size: sector Number of sectors NVRAM size is set to,

from 1 to 96.
Example:
#include "5510drv.h"
void main()
{
unsigned char sector;
sector = Get_NVRAM_Size();
adv_printf(“Backup ram=%dKbyte\n”,sector*4);
/*Set Bacup ram 40Kbyte*/
Set_NVRAM_Size(10);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-25

write_backup_ram
read_backup_ram

Syntax:
void write_backup_ram(unsigned long index, BYTE data)
unsigned char read_backup_ram(unsigned long index)

Description:
Writes a byte to battery backup memory.
Reads the value in backup RAM at index address, maximum 384 KB
total backup RAM, index = 0 – 393214;

Parameter Description
index An index for data in the battery backup RAM, from

0 to 393214; maximum 384 KB battery backup SRAM
in total.
data A byte of data that the programmer wants to write to

battery-protected SRAM.

Return value:
The single-byte value in backup RAM at address index.

Example:
#include "5510drv.h"
void main()
{
 unsigned long addr;
 unsigned char data;
 /*write the data 0x55 into battery backup memory, index=10*/
 data=0x55;
 write_backup_ram(10,data);
 adv_printf("data=%x\n",read_backup_ram(10));
}

Remarks:
None

Chapter 5 Programming and Function Library

5-26 ADAM-5510 Series User’s Manual

Timer_Init()

Syntax:
int Timer_Init()

Description:
Initializes the timer built into the 80188 microprocessor. The return
value “0” means the initialization of the time was successful. The
return value “1” means the timer had already been initialized.

Parameter Description
None.

Return value:
0: Initialization was successful.
1: The timer had already been initialized.

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-27

Timer_Reset

Syntax:
void Timer_Reset(int idx)

Description:
Resets the timer identified by the integer idx to its initial state.

Parameter Description
idx Timer index.

Return value:
None.

Remarks:
None.

Chapter 5 Programming and Function Library

5-28 ADAM-5510 Series User’s Manual

Timer_Set

Syntax:
int Timer_Set(unsigned int msec)

Description:
Requests a timer function from the microprocessor and then sets the
time interval of the function. Timer intervals are set in 5 millisecond
increments. The function return value is an integer representing the ID
of the timer function when it is successful.
A return value “-1” means the request failed. Programmers should
consider whether an assigned timer has timed-out when programming
for timer functions. The value of the variable tmArriveCnt[idx] can be
checked to verify timer status.
A value of 0 indicates that the timer is still counting. Values other than
0 mean the timer has timed-out.

Parameter Description
msec Time interval set, max. value is 65536.

Return value:
Integer Function success, value represents function timer ID. Max.
value of 100.
-1 Function failure.

Remarks:
Timer function calls in the ADAM-5510 SERIES are emulated as timer
functions in a PLC. Applications using timer functions will run less
efficiently the more timer functions are running simultaneously in a
program. Please refer to Example 9 on the utility diskettes for details.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-29

Release_All

Syntax:
void Release_All()

Description:
Releases all timer resources of the ADAM-5510 SERIES system.

Parameter Description
None.

Return value:
None.

Remarks:
None.

Example:
#include "5510drv.h"
void main()
{
 int idx;
 /* Initializes the timer built into the 80188 microprocessor */
 Timer_Init();
 /* Sets time interval of the timer to 1 second. */
 idx=Timer_Set(1000);
 /* Checks whether the timer has timed out */
 while(tmArriveCnt[idx]==0)
 {
 /* user can attend to other tasks... */
 adv_printf("test");
 }

 /* Resets the current timer to its initial state. */
 Timer_Reset(idx);
 /* Releases all timer resources */
 Release_All();
}

Chapter 5 Programming and Function Library

5-30 ADAM-5510 Series User’s Manual

WDT_clear,WDT_disable,WDT_enable

Syntax:
void WDT_clear(void)
void WDT_disable(void)
void WDT_enable(void)

Description:
Clear watchdog timer.
Disable watchdog timer.
Enable watchdog timer.
When the watchdog timer is enabled, it will have to be cleared at least
once every 1.5 seconds. The watchdog timer default value is “disable”.

Parameter Description
None.

Return value:
None.

Example:
#include "5510drv.h"
void main(void)
{
 int i;
 WDT_enable();
 for(i=0;i<100;i++)
 {
 /*put your code in Here*/
 WDT_clear();
 /*put your code in Here*/
 }
 WDT_disable();
}

Remarks:
None

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-31

adv_printf

Syntax:
void adv_printf(char *pFormat, ...);

Description:
Print string to console. This function has the same usage as printf()
function. However, it has lower priority to be executed.

Parameter Description
The same as printf() of standard Borland C 3.0 library function.

Return value:
None.

Example:

for(i=0;i<4;i++)
 {
 type[i]=Get_BoardID(i);
 if(type[i] > 0x18)
 type[i]=0;
 }

for(i=0;i<4;i++)
 {
 adv_printf("IO slot %d is %s \n",i+1,s_type[type[i]]);
 }
 adv_printf("press any key to continue...\n");

getch();

Remarks:
If printf() function is put within while loop such as Modbus/RTU server
function, it will decrease the performance of server function due to
higher priority of printf(). So it is strongly recommended that uses
adv_printf() instead, which has lower priority than printf().

Chapter 5 Programming and Function Library

5-32 ADAM-5510 Series User’s Manual

5.4.2 Low Speed AI Module Functions (LAI*.LIB)

AiUpdate

Syntax:
int AiUpdate(int Board, int *channel)

Description:
Checks whether the data of a low-speed analog input module, such as
ADAM-5017, ADAM-5018 and ADAM-5013, is ready to be accessed.

Parameter Description
int Board The slot number of an ADAM-5510 Series, from 0 to 7.
int *channel The return value indicates the channel for which data is
ready.
Valid value 0 to 7 for ADAM-5017.
Valid value 0 to 6 for ADAM-5018.
Valid value 0 to 2 for ADAM-5013.

Return value:
int status; 0 : Ready
-1 : Not ready
-2 : The hardware of the module failed

Example:
Please refer to the ADAM-5017/5018 Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-33

Get5013

Syntax:
void Get5013(int Board, int Channel, void *pValue)

Description:
Reads the data value in an ADAM-5013 module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 – 2 for ADAM-5013.
*pValue The value returned.

Note: The *pValue for ADAM-5013 must be interpreted in reference to
the input range that was set during module configuration.

Return Value:
None.

Example:
Please refer to the ADAM-5013 Example

Remarks:
None.

Chapter 5 Programming and Function Library

5-34 ADAM-5510 Series User’s Manual

Get501718

Syntax:
void Get501718(int Board, int Channel, void *pValue)

Description:
Reads the data value in an I/O module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 - 6 for ADAM-5018; 0 - 7 for ADAM-5017
*pValue The value returned.

Note: The *pValue for ADAM-5017 and ADAM-5018 must be
interpreted in reference to the range input that was set during module
configuration.

Return value:
None.

Example:
Please refer to the ADAM-5017/5018 Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-35

GetRange5013

Syntax:
void GetRange5013(int Board, int Channel, void *pRange)

Description:
Reads the input range in an ADAM-5013 module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 – 2 for ADAM-5013.
*pRange The input range code returned. (See Appendix B.)

Return Value:
None.

Example:
Please refer to the ADAM-5013 Example

Remarks:
None.

Chapter 5 Programming and Function Library

5-36 ADAM-5510 Series User’s Manual

GetRange501718

Syntax:
void GetRange501718(int Board, int Channel, void *pRange)

Description:
Reads the input range in an ADAM-501718 module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 – 7 for ADAM-5017, 0-6 for ADAM-5018.
*pRange The input range code returned (See Appendix B.)

Return Value:
*pRange The input range code returned.

Example:
Please refer to the ADAM-5017/5018 Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-37

Init5013

Syntax:
void Init5013(int Slot)

Description:
Initializes ADAM-5013. Note that ADAM-5013 must be initialized
before other commands are issued to it.

Parameter Description
Slot From 0 to 7.

Return Value:
None.

Example:
Please refer to the ADAM-5013 Example

Remarks:
None.

Chapter 5 Programming and Function Library

5-38 ADAM-5510 Series User’s Manual

Init501718

Syntax:
void Init501718(int Slot)

Description:
Initializes ADAM-5017 or ADAM-5018. Note that ADAM-5017 or
ADAM-5018 must be initialized prior to other commands being issued
to them.

Parameter Description
Slot From 0 to 7.

Return value:
None.

Example:
Please refer to the ADAM-5017/5018 Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-39

ADAM-5013 Example

#include "5510drv.h"
void main()
{
 char ch;
 unsigned char Range;
 int *pRange,*pVaule;
 int i,j;
 int channel,slot;

 /*Initial ADAM-5013)*/
 /*One ADAM-5013 module on slot 2*/
 slot=2;
 Init5013(slot);
 GetRange5013(slot,0,pRange);

 Range=*pRange & 0xff;
 adv_printf("range is 0x%x \n",Range);

 for(i=0;i<100;)
 {
 while(AiUpdate(slot, &channel)==0)
 {
 Get5013(slot,channel,pVaule);
 adv_printf("\n channel= %d ADAM-5013=%04d
\n",channel,*pVaule);
 i++;
 }
 }
 Release_All();
}

Chapter 5 Programming and Function Library

5-40 ADAM-5510 Series User’s Manual

ADAM-5017/5018 Example

#include "5510drv.h"
void main()
{
 unsigned char Range,Format;
 int *pRange,*pVaule;
 int i;
 int channel,slot;

 char *RangeArray[6]={"+/-10V","+/-5V","+/-1V","+/-500mv","+/-
150mV","+/-20mv"};
 /*Initial ADAM-5017(ADAM-5018)*/
 /*One ADAM-5017 module on slot 0*/
 slot=0;
 Init501718(slot);
 GetRange501718(slot,0,pRange);

 Range=*pRange & 0xff;
 Format=(*pRange & 0xff00)>>8;
 adv_printf("with range is %s format is 0x%x\n",RangeArray[Range-
8],Format);

 for(i=0;i<100;)
 {
 while(AiUpdate(slot, &channel)==0)
 {
 Get501718(slot,channel,pVaule);
 adv_printf("\n channel= %d ADAM-5017=%04d
mV\n",channel,*pVaule);
 i++;
 }
 }
}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-41

5.4.3 High Speed I/O and Counter/Frequency Module Functions
(HIO*.LIB)

Get5017H

Syntax:
void Get5017H(int Board, int Channel, void *pValue)

Description:
Reads the data value in an ADAM-5017H module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 – 7 for ADAM-5017H.
*pValue The value returned.

Note: The pValue for ADAM-5017H must be interpreted in reference
to the input range that be setup in the module configuration

Return Value:
None.

Example:
Please refer to the ADAM-5017H Example

Remarks:
None.

Chapter 5 Programming and Function Library

5-42 ADAM-5510 Series User’s Manual

GetRange5017H

Syntax:
void GetRange5017H(int Board, int Channel, void *pRange)

Description:
Reads the input range in an ADAM-5017H module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Chanel 0 – 7 for ADAM-5017H.
*pRange The input range code returned. (See Appendix B.)

Return Value:
None.

Example:
Please refer to the ADAM-5017H Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-43

Init5017H

Syntax:
void Init5017(int Slot)

Description:
Initializes ADAM-5017H. Note that ADAM-5017H must be initialized
before other commands are issued to it.

Parameter Description
Slot From 0 to 7.

Return Value:
None.

Example:
Please refer to the ADAM-5017H Example

Remarks:
None.

Chapter 5 Programming and Function Library

5-44 ADAM-5510 Series User’s Manual

ADAM-5017H Example

#include "5510drv.h"
void main()
{
 int channel,*pRange;
 int Format,Range;
 int slot;
 int *pValue[8];
 char *RangeArray[12]={"+/-10V","0~10V","+/-5V","0~5V",
 "+/-2.5v","0-2.5V","+/-1V","0-1V",
 "+/-500mV","0~500mV","4~20mA","0~20mA"};
 slot=1;
 Init5017H(slot);
 channel=0;
 GetRange5017H(slot,channel,pRange);
 Format=(*pRange & 0xff00)>>8;
 Range=*pRange & 0xff;
 adv_printf("\n(with range is %s format is
0x%x)",RangeArray[Range],Format);
 Init5017H(slot);
 for(channel=0;channel<8;channel++)
 {
 Get5017H(slot,channel,pValue+channel);
 adv_printf("\n adam5017h channel:%d =
%d",channel,*(pValue+channel));
 }
}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-45

Init5024

Syntax:
void Init5024(int Slot, int ch0_val, int ch1_val, int ch2_val, int ch3_val)

Description:
Initializes ADAM-5024 module in the slot indicated, loading user-
specified analog output values into each of the modules' four channels.

Parameter Description
ch0_val The initial value output by channel 0.
ch1_val The initial value output by channel 1.
ch2_val The initial value output by channel 2.
ch3_val The initial value output by channel 3.

Return Value:
None.

Example:
Please refer to the ADAM-5024 Example

Remarks:
None.

Chapter 5 Programming and Function Library

5-46 ADAM-5510 Series User’s Manual

Set5024

Syntax:
void Set5024(void *pValue, int Board, int Channel)

Description:
Specifies the output of a channel of a selected ADAM-5024.

Parameter Description
*pValue The value set for analog output.
Board Slot number = 0 - 7.
Channel AO channel = 0 - 3.

Return Value:
None.

Example:
Please refer to the ADAM-5024 Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-47

ADAM-5024 Example

#include "5510drv.h"
void main()
{
 unsigned long *pValue;
 int channel,slot;
 slot=3;
 /*initializes outputs of all channels
 of the ADAM-5024 in slot 3 to output a
 value of 0 */
 Init5024(slot,0,0,0,0);
 /*Value set 2000mV*/
 *pValue=2000;
 for(channel=0;channel<4;channel++)
 {
 Set5024(pValue,slot,channel);
 adv_printf("\n channel %d = %d mV",channel,*pValue);
 }
}

Chapter 5 Programming and Function Library

5-48 ADAM-5510 Series User’s Manual

Get5050, Get5051, Get5052, Get5055

Syntax:
void Get5050(int Board, int Bit, int Size, void *pValue)
void Get5051(int Board, int Bit, int Size, void *pValue)
void Get5052(int Board, int Bit, int Size, void *pValue)
void Get5055(int Board, int Bit, int Size, void *pValue)

Description:
Reads the data value in an I/O module.

Parameter Description
Board ADAM-5510 Series slot number, from 0 to 7.
Bit See “Size” parameter below.
Size ABit, AByte, AWord

If Size= ABit, Bit=0..15 (pin0..pin15)
If Size=AByte, Bit=0 for Low Byte data; Bit=8 for High

Byte data
If Size=AWord, Bit does not care. Always word data.

pValue The value returned.

Return value:
None.

Example:
void main(void)
{
unsigned char Bdata;
unsigned int Wdata;
/* Slot0, pin13, data=0 or 1 */
Get5051(0, 13, ABit, &Bdata);
/* Slot2, pin0~pin7, Bdata=Low Byte data */
Get5051(2, 0, AByte, &Bdata);
/* Slot3, pin0~pin15, Wdata=Word data */
Get5051(3, 0, AWord, &Wdata);

Remarks:
Digital filter function is available. Please refer to InitDIFilter() function.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-49

Set5050, Set5055, Set5056, Set5060, Set5068, Set5069

Syntax:
void Set5050(void *pValue, int Board, int Bit, int Size)
void Set5055(void *pValue, int Board, int Bit, int Size)
void Set5056(void *pValue, int Board, int Bit, int Size)
void Set5060(void *pValue, int Board, int Bit, int Size)
void Set5068(void *pValue, int Board, int Bit, int Size)
void Set5069(void *pValue, int Board, int Bit, int Size)

Description:
Sets the digital output for ADAM-5050, ADAM-5055, ADAM-5056,
ADAM-5060, ADAM-5068 and ADAM-5069 modules to the specified
values.

Parameter Description
pValue The digital value specified by the user to be output.
Board 0 to 7 (Slot0 .. Slot7).
Bit See "Size" parameter below.
Size ABit, AByte, AWord

If Size = ABit, Bit = 0 ...15 (pin0 ... pin15)
If Size = AByte, Bit = 0 is Low Byte data

Bit = 8 is High Byte data
If Size = AWord, Bit does not care, always word
data.

Return Value:
None.

Example:
void main(void)
{

unsigned char Bitdata = 1;
Set5056(&Bitdata, 0, 13, ABit);
/ * Output 1 to slot 0, pin 13 */

}

Remarks:
None

Chapter 5 Programming and Function Library

5-50 ADAM-5510 Series User’s Manual

InitDIFilter

Syntax:
void InitDIFilter(int iSlot, int iCh, unsigned int MIN_Lo_Width, unsigned
int MIN_High_Width);

Description:
Set time interval of digital filter for DI channel.

Parameter Description
iSlot Slot no. from 0 to 7
iCh Channel no. 0 –15 depends on DI module
MIN_Lo_Width Time interval of DI filter for Low state
 (5 ~ 65535 msec)
MIN_High_Width Time interval of DI filter for High state
 (5 ~ 65535 msec)

Return Value:
None.

Example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "5510DRV.H"
#define MaxSlot 8
char *s_type[0x1f]={
 "",
 "",
 "",
 "",
 "ADAM5017 ", /*0x4*/
 "ADAM5018 ",
 "",
 "",
 "",
 "ADAM5013 ", /*0x9*/
 "",
 "",
 "ADAM5017H", /*0xc*/
 "ADAM5018H",
 "",
 "ADAM5052 ",

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-51

 "ADAM5050 ", /*0x10*/
 "ADAM5051 ",
 "ADAM5056 ",
 "",
 "ADAM5060 ", /*0x14*/
 "ADAM5055",
 "",
 "",
 "ADAM5024 " /*0x18*/
 "",
 "",
 "",
 "",
 "",
 "ADAM5080 ", /*0x1e*/
 };

void main()
{
 unsigned char type[MaxSlot];
 unsigned DI_Value, DO_Value;
 unsigned Pre_DI_Value;
 unsigned Pre_DI_Value1;
 unsigned DI_Value1;
 unsigned Pre_DI_Value2;
 unsigned DI_Value2;
 char c;
 int i;
 int Slot5051, Slot5056, Slot5052, Slot5050, Slot5055;
 int inputdelay;

 for(i=0;i<MaxSlot;i++)
 {
 type[i]=Get_BoardID(i);
 type[i] &= 0x1f;
 if(type[i] > 0x18)
 type[i]=0;
 }

 for(i=0;i<MaxSlot;i++)
 //print module slot positions
 {
 adv_printf("IO slot %d is %s \n",i,s_type[type[i]]);
 }
 adv_printf("press any key to continue...\n");getch();

 for(i=0; i<MaxSlot; i++)

Chapter 5 Programming and Function Library

5-52 ADAM-5510 Series User’s Manual

 {
 if(type[i]==0x11)
 Slot5051 = i;
 //5051 Slot position

 if(type[i]==0x12)
 Slot5056 = i;
 //5056 Slot position

 if(type[i]==0x0F)
 Slot5052 = i;

 if(type[i]==0x10)
 Slot5050 = i;

 if(type[i]==0x15)
 Slot5055 = i;
 }

 adv_printf("press '1' to turn on filter, the other key to turn off..\n");
 c=getch();
 if(c=='1')
 {
 adv_printf("Desired time interval (up to 5 msec): ");
 scanf("%d", &inputdelay);
 InitDIFilter(Slot5051, 0, inputdelay, inputdelay);
 InitDIFilter(Slot5051, 1, inputdelay, inputdelay);
 InitDIFilter(Slot5051, 2, inputdelay, inputdelay);
 InitDIFilter(Slot5055, 8, inputdelay, inputdelay);
 InitDIFilter(Slot5055, 15, inputdelay, inputdelay);
 }

 while(1)
 {
 Get5055(Slot5055,0,AByte, &DI_Value);
 Get5051(Slot5051,0,AWord,&DI_Value1);
 //get 5051 status

 if(Pre_DI_Value!=DI_Value)
 //if data changed, print new status
 {
 Pre_DI_Value=DI_Value;
 adv_printf("5055 status =%02X \n ",DI_Value);
 }

 if(Pre_DI_Value1!=DI_Value1)
 //if data changed, print new status

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-53

 {
 Pre_DI_Value1=DI_Value1;
 adv_printf("5051 status =%4x \n ",~DI_Value1);
 }
 }
}

Remarks:
Reference Data:

Time Interval Cut-off Frequency
15 ms 50 Hz
30 ms 20 Hz
50 ms 12 Hz

Chapter 5 Programming and Function Library

5-54 ADAM-5510 Series User’s Manual

Init5080

Description:
Initiate ADAM-5080 Module

Syntax:
void Init5080(int slotno)

Parameter Description
slotno The specific slot inserted with ADAM-5080

0-7 or slot0-slot7

Return Value:
None

Example:
Please refer to the ADAM-5080 Example

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-55

Get5080

Description:
Get Value from specific channel in ADAM-5080

Syntax:
void Get5080(int slotno, int channel, long *pValue)

Parameter Description
slotno The specific slot inserted with ADAM-5080

0-7 or slot0-slot7
channel The specific channel in ADAM-5080, 0-3
*pValue The Value returned

Return Value:
The Value from the specific channel

Example:
Please refer to the ADAM-5080 Example

Chapter 5 Programming and Function Library

5-56 ADAM-5510 Series User’s Manual

Clear_Counter

Description:
Reset the current counter value to its initial value

Syntax:
int Clear_Counter(int slotno, int channel)

Parameter Description
slotno The specific slot inserted with ADAM-5080

0-7 or slot0-slot7
channel The specific channel in ADAM-5080, 0-3

Return Value:
None

Example:
Please refer to the ADAM-5080 Example

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-57

Start_Stop_Counter

Description:
Start or stop the specific counter

Syntax:
int Stop_Start_Counter(int slotno, int channel, StartOrStop)

Parameter Description
slotno The specific slot inserted with ADAM-5080, 0-7

or slot0-slot7
channel The specific channel in ADAM-5080, 0-3

Start 1
Stop 0

Return Value:
None

Example:
Please refer to the ADAM-5080 Example

Chapter 5 Programming and Function Library

5-58 ADAM-5510 Series User’s Manual

ReadOverflowFlag

Description:
Check if counter value reach max. count limit

Syntax:
void ReadOverflowFlag(int slotno, char *pValue)

Parameter Description
slotno The specific slot inserted with ADAM-5080, 0-7 or slot0-

slot7
*pValue The value returned

Return Value:
The overflow value returned

Example:
Please refer to the ADAM-5080 Example

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-59

SetInitCounterVal

Description:
Set initial counter value (between 0 to 4,294,967,295)

Syntax:
int SetInitCounterVal(int slotno, int channel, unsigned long Value)

Parameter Description
slotno The specific slot inserted with ADAM-5080, 0-7 or slot0-

slot7
channel The specific channel in ADAM-5080, 0-3

Return Value:
None

Example:
Please refer to the ADAM-5080 Example

Chapter 5 Programming and Function Library

5-60 ADAM-5510 Series User’s Manual

GetRange5080

Syntax:
void GetRange5080(int Board, int Channel, void *pValue)

Description:
Reads the input range in an ADAM-5080 module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 – 3
*pValue Input Range Code

Return Value:
*pValue The input range code returned.
1 Counter input
2 Frequency input

Example:
Please refer to the ADAM-5080 Example

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-61

SetRange5080

Syntax:
void SetRange5080(int Board, int Channel, void *pValue)

Description:
Set the input range in an ADAM-5080 module.

Parameter Description
Board 0 – 7 for Slot0 ...Slot7.
Channel 0 – 3
*pValue Input Range Code

Return Value:
*pValue The input range code to be set.
1 Counter input
2 Frequency input

Example:
None

Remarks:
None.

Chapter 5 Programming and Function Library

5-62 ADAM-5510 Series User’s Manual

ADAM-5080 Example

#include "5510drv.h"

 char *s_type[0x1f]={
 "",
 "",
 "",
 "",
 "ADAM5017_ID ", /*0x4*/
 "ADAM5018_ID ",
 "ADAM5080_ID ", /*0x06*/
 "",
 "ADAM5013A_ID ", /*0x8*/
 "ADAM5013B_ID ", /*0x9*/
 "",
 "",
 "ADAM5017H_ID", /*0xc*/
 "ADAM5018H_ID",
 "",
 "ADAM5052_ID ",
 "ADAM5050_ID ", /*0x10*/
 "ADAM5051_ID ",
 "ADAM5056_ID ",
 "ADAM5068_ID ", /*0x13*/
 "ADAM5060_ID ", /*0x14*/
 "",
 "",
 "",
 "ADAM5024_ID " /*0x18*/
 "",
 "",
 "",
 "",
 "",
 "",
 };

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-63

void main()

{
 unsigned char range;
 unsigned char type[4];
 unsigned long counter_value;
 char overflag_value[4];
 char c;
 int ch,i;

 /* ---- first scan IO module -------*/
 for(i=0;i<4;i++)
 {
 type[i]=Get_BoardID(i);
 if(type[i] > 0x18)
 type[i]=0;
 }

 /*----show on the screen ---*/
 for(i=0;i<4;i++)
 {
 adv_printf("IO slot %d is %s \n",i+1,s_type[type[i]]);
 }

 /*--- Initialize counter module ----- */
 adv_printf("Initialize ADAM-5080\n");
 Init5080(0);

 /* Get ADAM-5080 range */
 GetRange5080(0,&range);
 if (range==1)
 adv_printf("Range is counter\n");
 if (range==2)
 adv_printf("Range is frequency\n");

 /* Start all of counter */

 for (i=0;i<4;i++)
 {
 if (Start_Stop_Counter(0,i,1)==0)

Chapter 5 Programming and Function Library

5-64 ADAM-5510 Series User’s Manual

 adv_printf("Board %d Channel %d Start failure!!\n",0,i);
 }

 /*--- Set initial counter value ---*/
 for (i=0;i<4;i++)
 {
 if (SetInitCounterVal(0,i,4294967290)==0)
 adv_printf("Board %d Channel %d Setting failure!!\n",0,i);
 }

 /*--- Clear all of counter ---*/
 for (i=0;i<4;i++)
 {
 if (Clear_Counter(0,i)==0)
 adv_printf("Board %d Channel %d Clear failure!!\n",0,i);
 }

 /*---- Forever loop until user press the "Q" key */
 while(1)
 {
 ReadOverflowFlag(0,&(overflag_value[0]));
 for (i=0;i<4;i++)

 adv_printf("Channel %d
over_flag_value=%d\n",i,overflag_value[i]);

 for (i=0;i<4;i++)
 {
 Get5080(0,i,&(counter_value));
 adv_printf("Channel %d counter_value=%lu

\n",i,counter_value);
 }
 adv_printf("press 'Q' to quit, the other key to continue..\n");
 c=getch();
 if(c == 'q' || c == 'Q') /* Quit from this program */
 break;
 }

 /*--- Release all allocated timers to reload the control programs */
 Release_All();
}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-65

5.4.4 Communication Functions (COMM*.LIB)

checksum

Syntax:
unsigned int checksum(void *buffer, int len, unsigned int seed)

Description:
Calculates the checksum of the string or data array in the string buffer.

Parameter Description
buffer The string for which a user wants to calculate

the checksum.
len The length of the data array in the buffer.

seed A seed value added into the checksum for the
purpose of calculation or security.

Return value:
The checksum of the data array buffer.

Example:
unsigned char String[]=”this is a test CheckSum”;
void main(void)
{
unsigned int code;
code = checksum(String, strlen(String),0);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-66 ADAM-5510 Series User’s Manual

com_carrier

Syntax:
int com_carrier(void)

Description:
Detects the carrier signal of COM port.

Parameter Description
None.

Return value:
TRUE If a carrier is present.
FALSE No carrier.

Example:
void main(void)
{
if(com_carrier() == TRUE) {
/* Telephone carrier signal present at COM
port, put your associate program here */
}
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-67

com_clear_break,
com_set_break

Syntax:
void com_clear_break(unsigned baseaddr)
void com_set_break(unsigned baseaddr)

Description:
Sets COM port to clear BREAK signal.
Sets COM port to send BREAK signal.

Parameter Description
baseaddr The UART address, COM1=0x3F8,
COM2=0x2F8.

Return value:
None.

Example:
None.

Remarks:
Please refer to the 16C550 UART register document (Appendix B).

Chapter 5 Programming and Function Library

5-68 ADAM-5510 Series User’s Manual

com_clear_local_loopback,
com_set_local_loopback

Syntax:
void com_clear_local_loopback(unsigned baseaddr)
void com_set_local_loopback(unsigned baseaddr)

Description:
Sets COM port to disable loopback function for diagnostic.
Sets COM port to enable loopback function for diagnostic.

Parameter Description
baseaddr The UART address, COM1=0x3F8,
COM2=0x2F8.

Return value:
None.

Example:
None.

Remarks:
Please refer to the 16C550 UART register document (Appendix B).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-69

com_deinstall

Syntax:
void com_deinstall(void)

Description:
Uninstalls the communications drivers completely, without changing
the baud rate or DTR.

Parameter Description
None.

Return value:
None.

Example:
void main(void)
{
/* codes placed here by user */
com_deinstall();
}

Remarks:
This function MUST be called before returning to DOS, so the
interrupt vector will not point to our driver anymore.

Chapter 5 Programming and Function Library

5-70 ADAM-5510 Series User’s Manual

com_disable_fifo, com_enable_fifo

Syntax:
void com_disable_fifo(unsigned baseaddr)
int com_enable_fifo(unsigned baseaddr, unsigned triggerlevel)

Description:
Sets COM port to disable fifo receiving trigger level 1, 4, 8, 14.
Sets COM port to enable fifo receiving trigger level 1, 4, 8, 14.

Parameter Description
Baseaddr The UART address, COM1=0x3F8,
COM2=0x2F8.
Triggerlevel 1, 4, 8, 14.

Return value:
0: Success.
-1: Fifo not available.
-10: Failure to enable.

Example:
None.

Remarks:
Please refer to the 16C550 UART register document (Appendix B).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-71

com_flush_rx, com_flush_tx

Syntax:
void com_flush_rx(void)
void com_flush_tx(void)

Description:
Buffer flushers. Initializes the transmit and receive queues
(respectively)
to their empty state.

Parameter Description
None.

Return value:
None.

Example:
void main(void)
{
com_flush_tx();
com_flush_rx();
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-72 ADAM-5510 Series User’s Manual

com_get_line_status,
com_set_line_params,
com_get_modem_status

Syntax:
int com_get_line_status(unsigned baseaddr)
int com_set_line_params(unsigned baseaddr, unsigned lineparams)
int com_get_modem_status(unsigned baseaddr)

Description:
Reads from COM port line control register.
Writes to COM port line control register.
Reads from COM port modem status register.

Parameter Description
baseaddr The UART address, COM1=0x3F8,
COM2=0x2F8.
lineparams Please refer to the UART specifications.

Return value:
Please refer to the 16C550 UART register document (Appendix B).

Example:
None.

Remarks:
Please refer to the 16C550 UART register document (Appendix B).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-73

com_install

Syntax:
int com_install(int portnum);

Description:
Installs the communications drivers.

Parameter Description
int portnum; Desired port number, always 1 for ADAM-5510.

Return value:
int status; 0 = Successful installation.
1 = Drivers already installed.
2 = Invalid port number.
3 = No UART for specified port.

Example:
void main(void)
{
status = com_install(1); /* COM1 */
if(status == 0) adv_printf(“\n COM1 install OK!”);
else exit(0);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-74 ADAM-5510 Series User’s Manual

com_lower_dtr,
com_raise_dtr

Syntax:
void com_lower_dtr(void)
void com_raise_dtr(void)

Description:
Sets COM port to DTR for low signal.
Sets COM port to DTR for high signal.

Parameter Description
None.

Return value:
None.

Example:
None.

Remarks:
Please refer to the 16C550 UART register document (Appendix B).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-75

com_lower_rts,
com_raise_rts

Syntax:
void com_lower_rts(unsigned baseaddr)
void com_raise_rts(unsigned baseaddr)

Description:
Sets COM port to RTS for low signal.
Sets COM port to RTS for high signal.

Parameter Description
baseaddr The UART address, COM1=0x3F8,
COM2=0x2F8.

Return value:
None.

Example:
#define COM1 0x3F8
#define COM2 0x2F8
void main(void)
{
com_lower_rts(COM1); /* handshaking with
external serial device */
ADAMdelay(500);
com_raise_rts(COM1); /* generates a signal of
500 ms low trigger */
}

Remarks:
Please refer to the 16C550 UART register document (Appendix B).

Chapter 5 Programming and Function Library

5-76 ADAM-5510 Series User’s Manual

com_read_scratch_register,
com_write_scratch_register

Syntax:
int com_read_scratch_register(unsigned baseaddr)
void com_write_scratch_register(unsigned baseaddr, int value)

Description:
Reads from COM port scratch register.
Writes to COM port scratch register.

Parameter Description
baseaddr The UART address, COM1=0x3F8,
COM2=0x2F8.
value Integer value one byte in length, assigned by
user from the range 0 to FF.

Return value:
Please refer to the 16C550 UART register document (Appendix B).

Example:
None.

Remarks:
This byte is reserved for the user. Please refer to the 16C550 UART
register document (Appendix B).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-77

com_set_format

Syntax:
void com_set_format(int data_length, int parity, int stop_bit)

Description:
Sets the parameters for data length, parity and stop bits for the COM1
port.

Parameter Description
data_length Valid range 5 to 8 bits for 1 character.
parity 0: no parity
1: odd parity
2: even parity
stop_bit 1: 1 stop bit
2: 2 stop bits

Return value:
None.

Example
void main()
{
/* Sets data format of the COM1 port to 8-bit data length, no
parity, 1 stop bit*/
com_set_format(8, 0, 1);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-78 ADAM-5510 Series User’s Manual

com_set_parity

Syntax:
void com_set_parity(enum par_code parity, int stop_bits);

Description:
Sets the parity and stop bits.

Parameter Description
int code; COM_NONE = 8 data bits, no parity
COM_EVEN = 7 data bits, even parity
COM_ODD = 7 data bits, odd parity
COM_ZERO = 7 data bits, parity bit = zero
COM_ONE = 7 data bits, parity bit = one
int stop_bits; Must be 1 or 2.

Return value:
None.

Example:
void main(void)
{
com_set_parity(COM_NONE, 1); /* set N, 8, 1 */
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-79

com_set_speed

Syntax:
void com_set_speed(unsigned long speed);

Description:
Sets the baud rate of the COM port.

Parameter Description
speed The baud rate value.

Return value:
None.

Example:
void main(void)
{
com_set_speed(9600L);
/* set baud rate = 9600 bps */
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-80 ADAM-5510 Series User’s Manual

com_rx

Syntax:
char com_rx(void)

Description:
Returns the next character from the receive buffer, or a NULL
character
(‘\0’) if the buffer is empty.

Parameter Description
None.

Return value:
c The returned character.

Example:
void main(void)
{
unsigned char COMdata;
COMdata = com_rx();
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-81

com_tx

Syntax:
void com_tx(char c)

Description:
com_tx() sends a single character by waiting until the transmit buffer
isn’t full, then putting the character into it. The interrupt driver will
then send the character once it is at the head of the transmit queue
and a transmit interrupt occurs.

Parameter Description
c The value you would like to send.

Return value:
None.

Example:
void main(void)
{
com_tx(0x02);
com_tx(0x03);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-82 ADAM-5510 Series User’s Manual

com_rx_empty,
com_tx_empty

Syntax:
int com_rx_empty(void)
int com_tx_empty(void)

Description:
Small routines to return status of the transmit and receive queues.

Parameter Description
None.

Return value:
Com_rx_empty(void) returns TRUE if the receive queue is empty.
Com_tx_empty(void) returns TRUE if the transmit queue is empty.

Example:
void main(void)
{
unsigned char data;
if(com_rx_empty() == FALSE) data=com_rx();
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-83

com_tx_string

Syntax:
void com_tx_string(char *s)

Description:
com_tx_string() sends a string by repeatedly calling com_tx().

Parameter Description
s The string you would like to send.

Return value:
None.

Example:
unsigned char name[]=”ADAM5510”;
void main(void)
{
com_tx_string(name);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-84 ADAM-5510 Series User’s Manual

com_485_deinstall

Syntax:
void com_485_deinstall(void)

Description:
Releases the interrupt register of the microprocessor for use by the
RS-485 port without changing the baud rate or DTR.

Parameter Description
None.

Return value:
None.

Example:
void main()
{
/* Releases the interrupt register for use by the
RS-485 port */
com_485_deinstall();
}

Remarks:
This function MUST be called before returning to DOS. The interrupt
vector will not be pointed to the interrupt service routine again.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-85

com_485_flush_rx(),
com_485_flush_tx()

Syntax:
void com_485_flush_rx(void)
void com_485_flush_tx(void)

Description:
COM2 (RS-485) buffer flusher. Initializes the transmitting and
receiving queues to their empty states.

Parameter Description
None.

Return value:
None.

Example:
void main()
{
com_485_flush_rx();
com_485_flush_tx();
}

Remarks:
The COM2 (RS-485) transmitter uses polling-action (not
interrupt-action). Its buffer is always flushed.

Chapter 5 Programming and Function Library

5-86 ADAM-5510 Series User’s Manual

com_485_install

Syntax:
int com_485_install(void)

Description:
Allocates the interrupt registers of the microprocessor for use by the
RS-485 port and sets the interrupt vector to the interrupt service
routine.

Parameter Description
None.

Return value:
integer; Installation status.
0 = Successful installation
1 = Drivers are already installed

Example:
void main()
{
int status;
status = com_485_install();
if(status ==0)
adv_printf(“\n The allocation of COM2 port (RS-485) is
OK !”);
else
exit(0);
}

Remarks
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-87

com_485_rx

Syntax:
char com_485_rx(void)

Description:
Returns the next character from the receiving buffer, or a NULL
character(‘\0’) if the buffer is empty.

Parameter Description
None.

Return value:
c The return character.

Example:
void main()
{
char C485data;
C485data=com_485_rx();
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-88 ADAM-5510 Series User’s Manual

com_485_set_format

Syntax:
void com_485_set_format(int data_length, int parity, int stop_bit)

Description:
Sets the parameters data length, parity and stop bits of the RS-485
port.

Parameter Description
data_length Valid range 5 to 8 bits for one character.
parity 0: no parity
1: odd parity
2: even parity
stop_bit 1: 1 stop bit
2: 2 stop bits

Return value:
None.

Example:
void main()
{
/* Sets the data format of the RS-485 port to 8-bit
data length, no parity, 1 stop bit*/
com_485_set_format(8, 0, 1);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-89

com_485_set_speed

Syntax:
void com_485_set_speed(unsigned long speed)

Description:
Sets the baud rate of the RS-485 port.

Parameter Description
speed The baud rate value.

Return value:
None.

Example:
void main()
{
com_485_set_speed(9600L);/*Sets the baud rate of
the RS-485 port to 9600 bps */
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-90 ADAM-5510 Series User’s Manual

com_485_rx_empty(),
com_485_tx_empty()

Syntax:
int com_485_rx_empty(void)
int com_485_tx_empty(void)

Description:
Returns the status of the COM2 (RS-485) transmitting and receiving
queues.

Parameter Description
None.

Return value:
Com_485_rx_empty() returns “TRUE” if the receiving queue is empty.
Com_485_tx_empty() returns “TRUE” if the transmitting queue is
empty.

Example:
void main()
{
unsigned char data;
if(com_485_rx_empty()== FALSE)
data =com_485_rx();
}

Remarks:
The COM2 (RS-485) transmitter uses polling-action (not
interrupt-action). Its queue is always empty.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-91

com_485_tx

Syntax:
void com_485_tx(char c)

Description:
This function sends a single character to the Tx pin of the RS-485 port,
waits until the last bit is sent to the remote terminal, and then sets the
RTS pin to OFF.

Parameter Description
c The character you would like to send.

Return value:
None.

Example:
void main()
{
com_485_tx(0x03);
com_485_tx(‘$’);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-92 ADAM-5510 Series User’s Manual

com_485_tx_string

Syntax:
void com_485_tx_string(char *s)

Description:
com_485_tx_string() sends a string by calling com_485_tx()
repeatedly.

Parameter Description
s The string you would like to send.

Return value:
None.

Example:
void main()
{
com_485_tx_string(“This is a string test.”);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-93

com_pgm_deinstall

Syntax:
void com_pgm_deinstall(void)

Description:
Releases the interrupt registers of the microprocessor for use by the
programming port without changing the baud rate or DTR.

Parameter Description
None.

Return value:
None.

Example:
void main()
{
—
—
/* There are some codes before such a function call
*/
com_pgm_deinstall();
}

Remarks:
The programming port is normally used for downloading control
programs to the ADAM-5510 using the ADAM-5510 utility. The
programming port can be used as an additional communication port if
the users have such a requirement. NOTE: The user MUST reset the
ADAM-5510 before he uses the port for program downloading again.

Chapter 5 Programming and Function Library

5-94 ADAM-5510 Series User’s Manual

com_pgm_flush_rx(),
com_pgm_flush_tx()

Syntax:
void com_pgm_flush_rx()
void com_pgm_flush_tx()

Description:
COM3 (Programming port) buffer flusher. Initializes the transmit and
receive queues to their empty states.

Parameter Description
None.

Return value:
None.

Example:
void main()
{
com_pgm_flush_rx();
com_pgm_flush_tx();
}

Remarks:
The COM3 (programming port) transmitter uses polling-action (not
interrupt-action). Its buffer is always flushed.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-95

com_pgm_install

Syntax:
int com_pgm_install(void)

Description:
Allocates the interrupt registers of the microprocessor for use by the
programming port (COM3) and sets the interrupt vector to the interrupt
service routine.

Parameter Description
None.

Return value:
int status: 0 = Successful installation
1 = Drivers are already installed

Example:
void main()
{
int status;
status = com_pgm_install();
if(status ==0)
adv_printf(“\n Programming port has been installed
successfully !”);
else
exit(0);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-96 ADAM-5510 Series User’s Manual

com_pgm_rx

Syntax:
char com_pgm_rx(void)

Description:
Returns the next character from the receiving buffer, or a NULL
character (‘\0’) if the buffer is empty.

Parameter Description
None.

Return value:
c The return character.

Example:
void main()
{
char CPGMdata;
CPGMdata=com_pgm_rx();
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-97

com_pgm_rx_empty(),
com_pgm_tx_empty()

Syntax:
int com_pgm_rx_empty(void)
int com_pgm_tx_empty(void)

Description:
Returns the status of the COM3 (Programming port) transmitting and
receiving queues.

Parameter Description
None.

Return value:
Com_pgm_rx_empty() returns “TRUE” if the receiving queue is empty.
Com_pgm_tx_empty() returns “TRUE” if the transmitting queue is
empty.

Example:
void main()
{
unsigned char data;
if(com_pgm_rx_empty()== FALSE)
data =com_pgm_rx();
}

Remarks:
The COM3 (programming port) transmitter uses polling-action (not
interrupt-action). Its queue is always empty.

Chapter 5 Programming and Function Library

5-98 ADAM-5510 Series User’s Manual

com_pgm_set_format

Syntax:
void com_pgm_set_format(int data_length, int parity, int stop_bit)

Description:
Sets the parameters data length, parity and stop bits of the
programming port.

Parameter Description
data_length Valid ranges: 7 or 8 bits for one character.
parity 0: no parity
1: odd parity
2: even parity
stop_bit 1: 1 stop bit
2: 2 stop bits

Return value:
None.

Example:
void main()
{
/* Sets the data format of the programming port to
8-bit data length, no parity, 1 stop bit*/
com_pgm_set_format(8, 0, 1);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-99

com_pgm_set_speed

Syntax:
void com_pgm_set_speed(unsigned long speed)

Description:
Sets the baud rate of the programming port (COM3).

Parameter Description
speed The baud rate value.

Return value:
None.

Example:
void main()
{
com_pgm_set_speed(9600L);
/* Sets the baud rate of the programming port to
9600 bps */
}

Remarks:
We suggest that users set the baud rate of the programming port
below 57600 bps (included) because the programming port UART
chip is not a standard UART chip.

Chapter 5 Programming and Function Library

5-100 ADAM-5510 Series User’s Manual

com_pgm_tx

Syntax:
void com_pgm_tx(char c)

Description:
This function sends a single character to the Tx pin of the
programming port, waits until the last bit is sent to the remote terminal,
and then sets the RTS pin to OFF.

Parameter Description
c The character you would like to send.

Return value:
None.

Example:
void main()
{
com_pgm_tx(0x03);
com_pgm_tx(‘$’);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-101

com_pgm_tx_string

Syntax:
void com_pgm_tx_string(char *s)

Description:
com_pgm_tx_string() sends a string by calling com_pgm_tx()
repeatedly.

Parameter Description
s The string you would like to send.

Return value:
None.

Example:
void main()
{
com_pgm_tx_string(“This is a string test.”);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-102 ADAM-5510 Series User’s Manual

com_232_485_deinstall

Syntax:
void com_232_485_deinstall(void)

Description:
Releases the interrupt register of the microprocessor for use by the
RS-232/485 port (COM4) without changing the baud rate or DTR.

Parameter Description
None.

Return value:
None.

Example:
void main()
{
/* Releases the interrupt register for use by the COM4 RS-232/485
port */
com_232_485_deinstall();
}

Remarks:
This function MUST be called before returning to DOS. The interrupt
vector will not be pointed to the interrupt service routine again.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-103

com_232_485_flush_rx(),
com_232_485_flush_tx()

Syntax:
void com_232_485_flush_rx(void)
void com_232_485_flush_tx(void)

Description:
COM4 (RS-232/485) buffer flusher. Initializes the transmitting and
receiving queues to their empty states.

Parameter Description
None.

Return value:
None.

Example:
void main()
{
com_232_485_flush_rx();
com_232_485_flush_tx();
}

Remarks:
The COM4 (RS-232/485) transmitter uses polling-action (not
interrupt-action). Its buffer is always flushed.

Chapter 5 Programming and Function Library

5-104 ADAM-5510 Series User’s Manual

com_232_485_install

Syntax:
int com_232_485_install(void)

Description:
Allocates the interrupt registers of the microprocessor for use by the
COM4 RS-232/485 port and sets the interrupt vector to the interrupt
service
routine.

Parameter Description
None.

Return value:
integer; Installation status.
0 = Successful installation
1 = Drivers are already installed

Example:
void main()
{
int status;
status = com_232_485_install();
if(status ==0)
adv_printf(“\n The allocation of COM4 port (RS-232/485) is
OK !”);
else
exit(0);
}

Remarks
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-105

com_232_485_rx

Syntax:
char com_232_485_rx(void)

Description:
Returns the next character from the receiving buffer, or a NULL
character(‘\0’) if the buffer is empty.

Parameter Description
None.

Return value:
c The return character.

Example:
void main()
{
char C232485data;
C232485data=com_232_485_rx();
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-106 ADAM-5510 Series User’s Manual

com_232_485_set_format

Syntax:
void com_232_485_set_format(int data_length, int parity, int stop_bit)

Description:
Sets the parameters data length, parity and stop bits of the COM4 RS-
232/485 port.

Parameter Description
data_length Valid range 5 to 8 bits for one character.
parity 0: no parity
1: odd parity
2: even parity
stop_bit 1: 1 stop bit
2: 2 stop bits

Return value:
None.

Example:
void main()
{
/* Sets the data format of the COM4 RS-232/485 port to 8-bit
data length, no parity, 1 stop bit*/
com_232_485_set_format(8, 0, 1);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-107

com_232_485_set_speed

Syntax:
void com_232_485_set_speed(unsigned long speed)

Description:
Sets the baud rate of the COM4 RS-232/485 port.

Parameter Description
speed The baud rate value.

Return value:
None.

Example:
void main()
{
com_232_485_set_speed(9600L);
/*Sets the baud rate of the COM4 RS-232/485 port to 9600 bps */
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-108 ADAM-5510 Series User’s Manual

com_232_485_rx_empty(),
com_232_485_tx_empty()

Syntax:
int com_232_485_rx_empty(void)
int com_232_485_tx_empty(void)

Description:
Returns the status of the COM4 (RS-232/485) transmitting and
receiving queues.

Parameter Description
None.

Return value:
Com_232_485_rx_empty() returns “TRUE” if the receiving queue is
empty.
Com_232_485_tx_empty() returns “TRUE” if the transmitting queue is
empty.

Example:
void main()
{
unsigned char data;
if(com_232_485_rx_empty()== FALSE)
data =com_232_485_rx();
}

Remarks:
The COM4 (RS-232/485) transmitter uses polling-action (not
interrupt-action). Its queue is always empty.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-109

com_232_485_tx

Syntax:
void com_232_485_tx(char c)

Description:
This function sends a single character to the Tx pin of the COM4 RS-
232/485 port, waits until the last bit is sent to the remote terminal, and
then sets the RTS pin to OFF.

Parameter Description
c The character you would like to send.

Return value:
None.

Example:
void main()
{
com_232_485_tx(0x03);
com_232_485_tx(‘$’);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-110 ADAM-5510 Series User’s Manual

com_232_485_tx_string

Syntax:
void com_232_485_tx_string(char *s)

Description:
com_232_485_tx_string() sends a string by calling com_232_485_tx()
repeatedly.

Parameter Description
s The string you would like to send.

Return value:
None.

Example:
void main()
{
com_232_485_tx_string(“This is a string test.”);
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-111

CRC16

Syntax:
unsigned int CRC16(char *data_p, unsigned int length)

Description:
Calculates the CRC 16-bit value of the string *data_p.

Parameter Description
*data_p The string which you want to calculate CRC code.
length The length of string *data_p.

Return value:
The CRC16 code.

Example:
unsigned char String[]=”this is a test CRC16”;
void main(void)
{
unsigned int code;
code = CRC16(String, strlen(String));
adv_printf(“\n The string %s CRC16 code = %d”, String,
Code);
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-112 ADAM-5510 Series User’s Manual

modem_autoanswer

Syntax:
void modem_autoanswer(void)

Description:
Sets up modem to auto answer phone calls.

Parameter Description
None.

Return value:
None.

Example:
void main(void)
{
modem_autoanswer();
/* waiting phone call */
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-113

modem_command

Syntax:
void modem_command(char *cmdstr)

Description:
Sends an AT command string to the modem. For details, refer to the
AT command document provided by the manufacturer.

Parameter Description
cmdstr Specifies command string; refer to AT command
string.

Return value:
None.

Example:
void main(void)
{
modem_command(“atz”); /* initialize modem */
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-114 ADAM-5510 Series User’s Manual

modem_command_state

Syntax:
void modem_command_state(void)

Description:
Sets modem to command mode. In other words, this causes the
modem to escape from data mode to command mode. The modem
will delay at least 3 seconds before switching back to command mode.
This command has the same effect as sending the ASCII command
“+++” to the modem.

Parameter Description
None.

Return value:
None.

Example:
void main(void)
{
/* receiving data from modem, so modem is in transfer
data mode. */
modem_command_state();
/* now, you can send an AT command string to modem
*/
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-115

modem_dial

Syntax:
void modem_dial(char *telenum)

Description:
Directs modem to connect to the specified telephone number.

Parameter Description
telenum The phone number you would like modem to dial.

Return value:
None.

Example:
void main(void)
{
/* COM port and modem initial OK */
modem_dial(“886222184567”);
/* waiting to link */
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-116 ADAM-5510 Series User’s Manual

modem_handup

Syntax:
void modem_handup(void)

Description:
Sets the modem to hand up the telephone. The command has the
same effect as sending the ASCII command “atho” to the modem.

Parameter Description
None.

Return value:
None.

Example:
void main(void)
{
modem_handup(); /* close phone */
}

Remarks:
None.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-117

modem_initial

Syntax:
void modem_initial(void)

Description:
Sets modem to initial status. Due to the ADAM5510 system’s
construction, the modem can only be connected to COM1. This resets
the modem to the initial state. The command has the same effect as
sending the ASCII command “atz” to the modem.

Parameter Description
None.

Return value:
None.

Example:
void main(void)
{
/* you need to initialize COM1 */
modem_initial();
/* put your modem function… */
}

Remarks:
None.

Chapter 5 Programming and Function Library

5-118 ADAM-5510 Series User’s Manual

Example Program:

#include "5510drv.h"
void main()
{
 unsigned long speed=9600L;
 unsigned char data,ch;
 int status,com,sp;
 unsigned int i,j;
 while(1)
 {
 adv_printf("\n com1: com232");
 adv_printf("\n com2: com485");

 adv_printf("\n com3: com232485");
 adv_printf("\n Input the coummunction at com : ");
 scanf("%d",&com);
 adv_printf("\n Select baud rate 9600L ");
 adv_printf("\n [1] 9600L ");
 adv_printf("\n [2] 19200L ");
 adv_printf("\n [3] 38400L ");
 adv_printf("\n [4] 57600L ");
 adv_printf("\n [5]115200L ");
 adv_printf("\n baudrate=");
 scanf("%d",&sp);

 //com2 port (RS-485) install
 switch(sp)
 {
 case 1:
 speed=9600L;break;
 case 2:
 speed=19200L;break;
 case 3:
 speed=38400L;break;
 case 4:
 speed=57600L;break;
 case 5:
 speed=115200L;break;
 default:
 speed=115200L;break;

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-119

 }
 switch(com)
 {
 case 1:

 status=com_install(1);
 if(status==0)
 adv_printf("\n The allocation of com%d port is ok\n ",com);
 else if (status==1)
 {

adv_printf("\ncom%d port is already
installed\n ",com);

 }
 else
 {
 adv_printf("\n The allocation of com%d port is not ok\n ",com);
 adv_printf("status=%d\n",status);
 exit(0);
 }

 //Format and Speed Setting
 com_set_format(8,0,1);
 com_set_speed(speed);
 //Transfer data
 adv_printf("Stop trasnfer data <ESC>");
 for(i=0;i<1000;i++)
 {
 for(j=0;j<1000;j++)
 {
 com_tx_string(" com232 test ");
 if(kbhit())
 {
 ch=getch();
 if(ch==0x1b){ i=1000;j=1000 ;}
 }
 }
 }
 //Receive data
 adv_printf("\n\n Please transfer data from server or <ESC> to
exit\n");

Chapter 5 Programming and Function Library

5-120 ADAM-5510 Series User’s Manual

 while(1)

 {
 if(com_rx_empty()==0)
 {
 data=com_rx();
 adv_printf("\n %c",data);

 }
 if(kbhit())
 {
 ch=getch();
 if(ch==0x1b){ break; }
 }
 }
 break;
 case 2:
 status=com_485_install();
 if(status==0)
 adv_printf("\n The allocation of com%d port is ok\n ",com);
 else if (status==1)
 {

adv_printf("\ncom%d port is
already installed\n ",com);

 }
 else
 {
 adv_printf("\n The allocation of com%d port is not ok\n ",com);
 adv_printf("status=%d\n",status);
 exit(0);
 }

 //Format and Speed Setting
 com_485_set_format(8,0,1);
 com_485_set_speed(speed);
 //Transfer data
 adv_printf("Stop trasnfer data <ESC>");
 for(i=0;i<1000;i++)
 {
 for(j=0;j<1000;j++)
 {

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-121

 com_485_tx_string(" com485 test ");
 if(kbhit())
 {
 ch=getch();
 if(ch==0x1b){ i=1000;j=1000 ;}
 }
 }
 }
 //Receive data

 adv_printf("\nPlease transfer data from server or input<ESC> to
exit\n");
 while(1)
 {
 if(com_485_rx_empty()==0)
 {
 data=com_485_rx();
 adv_printf("\n %c",data);
 }
 if(kbhit())
 {
 ch=getch();
 if(ch==0x1b){ break; }
 }
 }
 break;
 case 3:
 status=com_232_485_install();
 if(status==0)
 adv_printf("\n The allocation of com%d port is ok\n ",com);
 else if (status==1)
 {

adv_printf("\ncom%d port is
already installed\n ",com);

 }
 else
 {
 adv_printf("\n The allocation of com%d port is not ok\n ",com);
 adv_printf("status=%d\n",status);
 exit(0);
 }

Chapter 5 Programming and Function Library

5-122 ADAM-5510 Series User’s Manual

 //Format and Speed Setting
 com_232_485_set_format(8,0,1);
 com_232_485_set_speed(speed);
 //Transfer data
 adv_printf("Stop trasnfer data <ESC>");
 for(i=0;i<1000;i++){
 for(j=0;j<1000;j++){
 com_232_485_tx_string(" com232485 test ");
 if(kbhit())
 {
 ch=getch();
 if(ch==0x1b){ i=1000;j=1000 ;}
 }
 }
 }
 //Receive data
 adv_printf("\n\n Please transfer data from server or <ESC> to
exit\n");
 while(1)
 {
 if(com_232_485_rx_empty()==0)
 {
 data=com_232_485_rx();
 adv_printf("\n %c",data);
 }
 if(kbhit())
 {
 ch=getch();
 if(ch==0x1b){ break; }
 }
 }
 break;
 default:
 break;
 }
 adv_printf("\n <ESC> to exit or anykey to continue\n ");
 ch=getch();
 if(ch==0x1b){ break;}
 }
}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-123

5.4.5 Serial Module Functions (A5090*.LIB)

Port\Slot Slot0 Slot 1 Slot2 Slot 3 Slot4 Slot5 Slot6 Slot7

Port 1 1 11 21 31 41 51 61 71

Port 2 2 12 22 32 42 52 62 72

Port 3 3 13 23 33 43 53 63 73

Port 4 4 14 24 34 44 54 64 74

Table 5-2: ADAM-5090 Port No. Definition

Install Port

Syntax:
int port_install(int portno)

Description:
Install the communication drivers

Parameter Description
portno The specified port number

Return Value:
0 first time install and install completely!
4 not first time install but install completely!
5 portno error
6 no ADAM5090 Module in this slot

Chapter 5 Programming and Function Library

5-124 ADAM-5510 Series User’s Manual

Deinstalled Port

Syntax:
int port_deinstalled(int portno)

Description:
Uninstalled the communication drivers completely

Parameter Description
portno The specified port number

Return Value:
0 deinstall success
-1 deinstall fail

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-125

Select Working Port

Syntax:
void port_select(int portno)

Description:
Select a specified port for work

Parameter Description
portno The specified port number

Return Value:
None

Chapter 5 Programming and Function Library

5-126 ADAM-5510 Series User’s Manual

Reset Slot

Syntax:
int reset_slot(int slotno)

Description:
Reset specified slot

Parameter Description
slotno The slot you would like to reset

0~3

Return Value:
None

Example:
void main ()
{
//reset all port in the slot 0
reset_slot(0);
}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-127

Reset Port

Syntax:
void port_reset(int portno)

Description:
Reset specified port

Parameter Description
portno The specified port number

Return Value:
None

Chapter 5 Programming and Function Library

5-128 ADAM-5510 Series User’s Manual

Detect Installed Port

Syntax:
int which_has_been_installed(void)

Description:
Detects which ports have been installed

Parameter Description
portno The specified port number

Return Value:
Port mask which has been installed

EX.

0x2353 (0010-0011-0101-0011B)
The port01,02,11,13,21,22,32 have been installed

0x0082 (0000-0000-1000-0010B)
The port02,14 have been installed

Example:
void main ()
{

int Flag;

//here we install port1, 12, 23

port_install(1);
port_install(12);
port_install(23);

//set flat as the return value

Flag=which_has_been_install();

//Flag must be 0000-0100-0010-0001B

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-129

Set Port Baud Rate

Syntax:
void port_set_speed(int portno, long speed)

Description:
Set the baud rate of specified port

Parameter Description
portno The specified port number
long speed 4800L, 9600L, 19200L, 38400L, 115200L

Return Value:
None

Example:
void main ()

{
//here we install port1, 2
port_install(1);
port_install(2);

//select working port1, and set the communication rate to 38400bps
port_select(1);

port_speed(1, 38400L)

//select working port2, and set the communication rate to 9600bps
port_select(2);

port_speed(2, 9600L)
}

Chapter 5 Programming and Function Library

5-130 ADAM-5510 Series User’s Manual

Set Port Data Format

Syntax:
void port_set_format(int portno, int data_length, int parity, int stop_bit)

Description:
Set the parameters for data length, parity and stop bits for specified
port

Parameter Description
portno The specified port number
data length 5 - 8

parity 0x00 no parity

0x01 odd parity
0x02 even parity

stop bit 0x01 1 stop bit
0x02 2 stop bits

Return Value:
None

Example:
void main ()
{
port_install(1); port_select(1); port_speed(1, 9600L);

//set data format(Data Length=8; Parity=None; Stop Bit=1)

port_set_format(1, 8, 0, 1);

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-131

Disable Port FIFO (FIFO Size=1, for Tx and Rx)
Enable Port FIFO (FIFO Size=128, for Tx and Rx)

Syntax:
void port_disable_fifo(int portno)
int port_enable_fifo(int portno)

Description:
Set specified port to disable FIFO
Set specified port to enable FIFO

Parameter Description
portno The specified port number

Return Value:
Disable FIFO : None
Enable FIFO : 0x00 FIFO enable success

0x01 FIFO not available
0x04 portno error

Example:
void main ()

{

port_install(1);

 :

 :

port_set_format(1, 8, 0, 1)

//enable port1 FIFO to 128 byte port_enable_fifo(1);

}

Chapter 5 Programming and Function Library

5-132 ADAM-5510 Series User’s Manual

Detect Port Carrier

Syntax:
int port_carrier(int portno)

Description:
Detect the carrier signal of specified port

Parameter Description
portno The specified port number

Return Value:
0 : no carrier been detected or bad command or parameter
1 : detect carrier

Example:
void main ()

{

port_install(1);

 :

 :

port_enable_fifo(1);

 //if port1 detected carrier, print out the message if(port_carrier(1));

 {

adv_printf(“\n port1 detect carrier”);

 {

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-133

Clear Port Break
Set Port Break

Description:
Set specified port to clear BREAK signal
Set specified port to send BREAK signal

Syntax:
void port_clear_break(int portno)
void port_set_break(int portno)

Parameter Description
portno The specified port number

Return Value:
None

Example:
void main ()

{

port_install(1);

 :

 :

port_enable_fifo(1);

 //set port1 to clear break signal port_clear_break(1);

//or “port_set_break(1)”

}

Chapter 5 Programming and Function Library

5-134 ADAM-5510 Series User’s Manual

Clear Local Loopback
Set Local Loopback

Syntax:
void port_clear_local_loopback(int portno)
void port_set_local_loopback(int portno)

Description:
Set specified port to disable loopback function for diagnostic
Set specified port to enable loopback function for diagnostic

Parameter Description
portno The specified port number

Return Value:
None

Example:
void main ()

{

port_install(1);

 :

 :

port_enable_fifo(1);

//set port1 to enable loopback function for diagnostic
port_set_local_loopback(1);

 //or “port_clear_local_loopback(1)”

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-135

Read LSR Set LCR

Syntax:
int port_get_line_status(int portno)
int port_set_line_params(int portno, int lineparams)

Description:
Read from specified port line status register (LSR)
Write to specific port line control register (LCR)

Parameter Description
portno The specified port number
lineparams Line control register parameter

(see UART Register Description Table)

Return Value:
port_get_line_status :

0x00XX : LSR value
0xFF00 : bad command or parameter

port_set_line_params :
0x00 : write success
0x01 : LCR read back error
0xFE00 : LCR write not able
0xFF00 : bad command or parameter

Example:
void main ()
{
int LSR_Value, LCR_Params;
port_install(1);
:
:
port_enable_fifo(1);

//get LSR value
LSR_Value=port_get_line_status(1);

//set LCR value=0x03
LCR_Params=0x03;
port_set_line_status(1, LCR_Params);
}

Chapter 5 Programming and Function Library

5-136 ADAM-5510 Series User’s Manual

Registe
r Name

Descriptio
n

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

LSR Line
Status
Register

Data
Error

Tx
Empt
y

THR
Empt
y

Rx
Break

Framin
g Error

Parity
Error

Overru
n Error

RxRD
Y

LCR Line
Control
Register

diviso
r latch
access

Tx
Break

Force
parity

odd/eve
n parity

Parity
enable

Numbe
r of
stop bit

data length
bits[1:0]

UART Register Description Table

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-137

Read Modem Status (MSR)

Syntax:
int port_get_modem_status(int portno)

Description:
Read from specified port modem status register

Parameter Description
portno The specified port number

Return Value:
0x00XX : modem status
0xFF00 : bad command or parameter

Example:
void main ()

{
int MSR_Value;
port_install(1);
 :
 :
port_enable_fifo(1);

 //get MSR value
MSR_Value=port_get_modem_status(1);
}

Registe
r Name

Descriptio
n

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

LSR Line
Status
Register

Data
Error

Tx
Empt
y

THR
Empt
y

Rx
Break

Framin
g Error

Parity
Error

Overru
n Error

RxRD
Y

LCR Line
Control
Register

diviso
r latch
access

Tx
Break

Force
parity

odd/eve
n parity

Parity
enable

Numbe
r of
stop bit

data length
bits[1:0]

UART Register Description Table

Chapter 5 Programming and Function Library

5-138 ADAM-5510 Series User’s Manual

Read Modem Control Register (MCR)
Set Modem Control Register (MCR)

Syntax:
int port_get_modem_control_status(int portno)
int port_set_modem_control_params(int portno, int MCRparams)

Description:
Read from specified port modem control register
Set from specified port modem control register

Parameter Description
portno The specified port number
MCRparams Modem control register parameter

(see UART Register Description Table)

Return Value:
Read MCR:

0x00XX : modem status
0xFF00 : bad command or parameter

Write MCR:

0x0000 : write MCR success
0x0001 : read back error
0xFF00 : bad command or parameter

Example: void main ()

{

int MCR_Value, MCR_Params;

port_install(1);

 :

 :

port_enable_fifo(1);

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-139

//set MCR value=3 (RTS=1; DTR=1) MCR_Params=3
port_set_modem_control_params(1, MCR_Params);

//get MCR value

MCR_Value=port_get_modem_control_status(1);

// MCR value must be 3

}

Registe
r Name

Descriptio
n

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

LSR Line
Status
Register

Data
Error

Tx
Empt
y

THR
Empt
y

Rx
Break

Framin
g Error

Parity
Error

Overru
n Error

RxRD
Y

LCR Line
Control
Register

diviso
r latch
access

Tx
Break

Force
parity

odd/eve
n parity

Parity
enable

Numbe
r of
stop bit

data length
bits[1:0]

UART Register Description Table

Chapter 5 Programming and Function Library

5-140 ADAM-5510 Series User’s Manual

Set DTR Low
Set DTR High

Syntax:
void port_lower_dtr(int portno)
void port_raise_dtr(int portno)

Description:
Set specified port DTR low
Set specified port DTR high

Parameter Description
portno The specified port number

Return Value:
None

Example:
void main ()

{

port_install(1);

 :

 :
//set port1 DTR low port_lower_dtr(1);

//set port1 DTR high port_raise_dtr(1);

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-141

Set RTS High
Set RTS Low

Syntax:
void port_raise_rts(int portno)
void port_lower_rts(int portno)

Description:
Set specified port RTS high
Set specified port RTS low

Parameter Description
portno The specified port number

Return Value:
None

Example:
void main ()

{

port_install(1);

 :

 :
//set port1 RTS low port_lower_rts(1);

 //set port1 RTS high port_raise_rts(1);

}

Chapter 5 Programming and Function Library

5-142 ADAM-5510 Series User’s Manual

Modem Initial

Syntax:
modem_initial_90(int portno)

Description:
Set modem to initial status

parameter Description
portno The specified port number

Return Value:
None

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-143

Send Modem AT Command

Syntax:
modem_command_90(int portno, char *cmdstr)

Description:
Send AT command string to the modem

parameter Description
portno The specified port number
*cmdstr AT command string

Return Value:
None

Chapter 5 Programming and Function Library

5-144 ADAM-5510 Series User’s Manual

Set Modem Command Mode

Syntax:
void modem_command_state_90(int portno)

Description:
Set modem to command mode

parameter Description
portno The specified port number

Return Value:
None

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-145

Set Modem Autoanswer

Syntax:
void modem_autoanswer_90(int portno)

Description:
Set up modem to auto answer phone calls

parameter Description
portno The specified port number

Return Value:
None

Chapter 5 Programming and Function Library

5-146 ADAM-5510 Series User’s Manual

Modem Dial Out

Syntax:
void modem_dial_90(int portno, char *telnumber)

Description:
Direct modem to dial the specified telephone number

parameter Description
portno The specified port number
*telnumber The telephone number you would like to dial out

Return Value:
None

Example: void main ()

{

port_install(1);

 :

 :

//initial modem for port1

modem_initial_90(1);

//set the dial out number as “1234-5678”

modem_dial_90(1, “12345678”);

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-147

Han up Modem

Syntax:
void modem_handup_90(int portno)

Description:
Set modem to hand up the telephone

parameter Description
portno The specified port number

Return Value:
None

Chapter 5 Programming and Function Library

5-148 ADAM-5510 Series User’s Manual

Rx Flush Tx Flush

Syntax:
void port_flush_rx(int portno) void port_flush_tx(int portno)

Description:
Flush Rx or Tx FIFO

parameter Description
portno The specified port number

Return Value:
None

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-149

Receive Error Check

Syntax:
int port_rx_error(int portno)

Description:
Check whether receive error or not

Parameter Description
portno The specified port number

Return Value:

0 : no error
0x00XX : receive error and return LSR value

Example:
void main ()

{

int Err_Value;

port_install(1);

 :

 :

//get error check value; if error, print out the message
Err_Value=port_rx_error(1); If(Err_Value)

 {

adv_printf(“\n Rx Error, The LSR value=%X”, Err_Value);

 }

}

Chapter 5 Programming and Function Library

5-150 ADAM-5510 Series User’s Manual

Ready Check

Syntax:
int port_rx_ready(int portno)

Description:
Check received data in port FIFO already

Parameter Description
portno The specified port number

Return Value:

0 : data not ready
1 : data ready

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-151

Receive Character

Syntax:
char port_rx(int portno)

Description:
Receive a character from specific port

Parameter Description
portno The specified port number

Return Value:
Character

Example:

void main ()

{

char C;

port_install(1);

 :

 :

//if port1 FIFO receive data, read a character and print it out

If(port_rx_ready(1));
 { C=port_rx(1);

adv_printf(“\n %C”, C);

 }

}

Chapter 5 Programming and Function Library

5-152 ADAM-5510 Series User’s Manual

Empty Check

Syntax:
int port_tx_empty(int portno)

Description:
Return the status of the specified port transmit queues

Parameter Description
portno The specified port number

Return Value:

0 : not empty
1 : FIFO empty
2 : FIFO and Transmitting empty

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-153

Send Character

Syntax:
void port_tx(int portno, char c)

Description:
Send a character to the THR of the specified port

Parameter Description
portno The specified port number
c The character you would like to send

Return Value:
None

Example:

main()

{
char character
port_installed(1)

:

:
//check whether FIFO empty or not, if empty, send a character
if(port_tx_empty(1);

{

character=’a’

port_tx(1, character)

{

}

Chapter 5 Programming and Function Library

5-154 ADAM-5510 Series User’s Manual

Send String

Syntax:
void port_tx_string(int portno, char *s)

Description:
Sends a string by calling port_tx() repeatedly

Parameter Description
portno The specified port number
* s the string you would like to send

Return Value:
None

Example:

main()

{
char string port_installed(1)

:

:
//check whether FIFO empty or not, if empty, send a string
if(port_tx_empty(1);

{

string=”abcde”

port_tx_string(1, string)

{

}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-155

5.4.6 MODBUS/RTU Functions (MBRTU*.LIB and MBRTU9*.LIB)

For ADAM-5510 Series COM Ports:

Modbus_COM_Init

Syntax:
int Modbus_COM_Init(int Port, int iMode, unsigned long iBaud, int
iParity, int iFormat, int iStopBits);

Description:
Initial a COM port for Modbus/RTU connection.

Parameters Value Description
Port: COM1 Initial COM1
 COM2 Initial COM2

COM4 Initial COM4
iMode: Slave Modbus/RTU slave mode

Master Modbus/RTU master mode
iBaud: 9600, etc … The value of baud rate
iparity: NO_PARITY No parity

ODD_PARITY Odd parity
EVEN_PARITY Even parity
ONE_PARITY Parity=1
ZERO_PARITY Parity=0

iFormat: DATA5 5 data bit
DATA6 6 data bit
DATA7 7 data bit
DATA8 8 data bit

iStopBits: STOP1 One stop bit
STOP2 Two stop bits

Return value:
0 No error occurs
1 COM_already_installed: COM port has been installed before.
2 Err_Access_COM: Error occurs when try to access COM port.

Chapter 5 Programming and Function Library

5-156 ADAM-5510 Series User’s Manual

Example:

if(Modbus_COM_Init(COM2, Master, (unsigned long)9600, NO_PARITY,
DATA8, STOP1)!=0)
 {
 adv_printf("error\n");
 return;
 }

 adv_printf("init success!!\n");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-157

Modbus_COM_Release

Syntax:
void Modbus_COM_Release(int Port);

Description:
Release the COM port of Modbus connection

Parameters Value Description
Port 1 COM1

2 COM2
4 COM4

Return value:
None

Chapter 5 Programming and Function Library

5-158 ADAM-5510 Series User’s Manual

Error_Code

Syntax:
int Error_Code(void);

Description:
When following function call gets error return, this function can get the
exact error code for user.

ADAMRTU_ForceMultiCoils(), ADAMRTU_ForceSingleCoil(),
ADAMRTU_PresetMultiRegs(), ADAMRTU_PresetSingleReg(),
ADAMRTU_ReadCoilStatus(), ADAMRTU_ReadHoldingRegs(),
ADAMRTU_ReadInputRegs(), ADAMRTU_ReadInputStatus()

Parameters Description
None

Return value:
NULL No exception error returned
Erro Code Exception error returned

Error code:
91 Invalid Response
92 COM Port Initial or Mode Error
93 COM Port Time Out

Example:

if(!ADAMRTU_ForceMultiCoils(COM2, 0x01, 0x11, 0x0C, 0x02, HostData)){
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
}
else

adv_printf("Success!!\n");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-159

ADAMRTU_ForceMultiCoils

Syntax:
bool ADAMRTU_ForceMultiCoils(int iPort, int Slave_Addr,

int CoilIndex, int TotalPoint, int TotalByte,
unsigned char szData[]);

Description:
“0F HEX” command of Modbus/RTU function code

Parameter
Parameter Description
iPort COM port number
Slave_Addr Slave address
CoilIndex Coil address
TotalPoint Quantity of coils
TotalByte Byte count
szData[] Force Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

HostData[0]=0xf0;

if(!ADAMRTU_ForceMultiCoils(COM1, 0x02, 0x64, 0x08, 0x01, HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 adv_printf("Success!!");

Chapter 5 Programming and Function Library

5-160 ADAM-5510 Series User’s Manual

ADAMRTU_ForceSingleCoil

Syntax:
bool ADAMRTU_ForceSingleCoil(int iPort, int i_iAddr, int i_iCoilIndex,
 int i_iData);

Description:
“05 HEX” command of Modbus/RTU function code.

Parameter Description
iPort COM port number
i_iAddr Slave address
i_iCoilIndex Coil address
int i_iData Force Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

if(!ADAMRTU_ForceSingleCoil(COM1, 0x02, 0x65, 0))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 adv_printf("Success!!");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-161

ADAMRTU_PresetMultiRegs

Syntax:
bool ADAMRTU_PresetMultiRegs(int iPort, int i_iAddr, int i_iStartReg,
 int i_iTotalReg, int i_iTotalByte, unsigned char i_szData[]);

Description:
“10 HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave address
i_iStartReg Starting Address
i_iTotalReg No. of Registers Hi
i_iTotalByte Byte Count
i_szData[] Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

HostData[0]=0x12;
HostData[1]=0x56;
HostData[2]=0x38;
HostData[3]=0x09;

if(!ADAMRTU_PresetMultiRegs(COM1, 0x02, 0x64, 2, 4, HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 return;
 }
 else
 adv_printf("Success!!");

Chapter 5 Programming and Function Library

5-162 ADAM-5510 Series User’s Manual

ADAMRTU_PresetSingleReg

Syntax:
bool ADAMRTU_PresetSingleReg(int iPort, int i_iAddr, int i_iRegIndex,
 int i_iData);

Description:
“06 HEX” command of Modbus RTU function code

Parameter Description
IPort COM port number
i_iAddr Slave Address
i_iRegIndex Register Address
i_iData Preset Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

if(!ADAMRTU_PresetSingleReg(COM1, 0x02, 0x68, 0x1234))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 return;
 }
 else
 adv_printf("Success!!");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-163

ADAMRTU_ReadCoilStatus

Syntax:
bool ADAMRTU_ReadCoilStatus(int iPort, int i_iAddr, int i_iStartIndex,
 int i_iTotalPoint, int *o_iTotalByte, unsigned char o_szData[]);

Description:
“01HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Coil Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

if(!ADAMRTU_ReadCoilStatus(COM1, 0x02, 0x6E, 0x01, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);
 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-164 ADAM-5510 Series User’s Manual

ADAMRTU_ReadHoldingRegs

Syntax:
bool ADAMRTU_ReadHoldingRegs(int iPort, int i_iAddr,

int i_iStartIndex, int i_iTotalPoint,
int *o_iTotalByte, unsigned char o_szData[]);

Description:
“03 HEX” command of Modbus RTU function code.

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Register Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

if(!ADAMRTU_ReadHoldingRegs(COM1, 0x02, 0x65, 0x01, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);
 }
 adv_printf("\n");
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-165

ADAMRTU_ReadInputRegs

Syntax:
bool ADAMRTU_ReadInputRegs(int iPort, int i_iAddr, int i_iStartIndex,
 int i_iTotalPoint, int *o_iTotalByte,

unsigned char o_szData[]);

Description:
“04 HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Register Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

if(!ADAMRTU_ReadInputRegs(COM1, 0x02, 0x65, 0x01, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);
 }
 adv_printf("\n");

Chapter 5 Programming and Function Library

5-166 ADAM-5510 Series User’s Manual

ADAMRTU_ReadInputStatus

Syntax:
bool ADAMRTU_ReadInputStatus(int iPort, int i_iAddr,

int i_iStartIndex, int i_iTotalPoint,
int *o_iTotalByte, unsigned char o_szData[]);

Description:
“02 HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Inputs Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

if(!ADAMRTU_ReadInputStatus(COM1, 0x02, 0x64, 0x08, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);
 }
 adv_printf("\n");
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-167

ADAMRTU_ModServer_Create

Syntax:
void ADAMRTU_ModServer_Create(int slave_addr, unsigned char *

ptr_mem, unsigned int size_of_mem);

Description:
Create Modbus/RTU Server function

Parameter Description
slave_addr Slave address of Modbus/RTU Server
ptr_mem Share memory
size_of_mem Size of share memory

Return value:
None

Example:

ADAMRTU_ModServer_Create(3, (unsigned char *)Share_Mem,

sizeof(Share_Mem));

 adv_printf("server started..\n");

 while(1)
 {
 if(predate != Share_Mem[0])
 {
 adv_printf("40001 is %X\n", Share_Mem[0]);

//strongly recommend use adv_printf() instead of printf()
 predate = Share_Mem[0];
 }
 }

Chapter 5 Programming and Function Library

5-168 ADAM-5510 Series User’s Manual

Ver_RTU_Mod

Syntax:
void Ver_RTU_Mod(char *vstr);

Description:
Check Modbus/RTU library version

Parameter Description
vstr Pointer to array of library version information

Return value:
None

Example:

char library_ver[20];

void main(void)
{
 Ver_RTU_Mod(library_ver);

 adv_printf("The version of library is %s\n", library_ver);
}

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-169

For ADAM-5090 Serial COM Ports:

Error_Code

Syntax:
int Error_Code(void);

Description:
When following function call gets error return, this function can get the
exact error code for user.

A5090_RTU_ForceMultiCoils(), A5090_RTU_ForceSingleCoil(),
A5090_RTU_PresetMultiRegs(), A5090_RTU_PresetSingleReg(),
A5090_RTU_ReadCoilStatus(), A5090_RTU_ReadHoldingRegs(),
A5090_RTU_ReadInputRegs(), A5090_RTU_ReadInputStatus()

Parameters Description
None

Return value:
NULL No exception error returned
Erro Code Exception error returned

Error code:
91 Invalid Response
92 COM Port Initial or Mode Error
93 COM Port Time Out

Example:

iport = 74; //slot7, port 4

…

if(!A5090_RTU_ReadCoilStatus(iport, 0x02, 0x6E, 0x01,

&DataByteCount, HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }

Chapter 5 Programming and Function Library

5-170 ADAM-5510 Series User’s Manual

Modbus_5090_Init

Syntax:
int Modbus_5090_Init(int Port, unsigned long iBaud, int iParity,

int iFormat, int iStopBits);

Description:
Initial a COM port on ADAM-5090 for Modbus/RTU connection.

Parameters: Value Description
Port: See below
iBaud: 9600, etc … The value of baud rate
iparity: NO_P No parity

ODD_P Odd parity
EVEN_P Even parity
ONE_P Parity=1
ZERO_P Parity=0

iFormat: D5 5 data bit
D6 6 data bit
D7 7 data bit
D8 8 data bit

iStopBits: S1 One stop bit
S2 Two stop bits

Port\Slot Slot0 Slot 1 Slot2 Slot 3 Slot4 Slot5 Slot6 Slot7

Port 1 1 11 21 31 41 51 61 71

Port 2 2 12 22 32 42 52 62 72

Port 3 3 13 23 33 43 53 63 73

Port 4 4 14 24 34 44 54 64 74

Table 5-2: ADAM-5090 Port No. Definition

Return value:
0x00 It’s the first time installed and install OK !
0x04 It’s not the first time installed and install OK !
0x05 The port number is incorrect
0x06 It’s not ADAM5090 module in this slot
0x07 Fail to create Rx buffer

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-171

Example:

iport = 74; //slot7, port 4

if(Modbus_5090_Init(iport, 9600L, NO_P, D8, S1)!=0)
 {
 adv_printf("error\n");
 return;
 }

Chapter 5 Programming and Function Library

5-172 ADAM-5510 Series User’s Manual

Modbus_5090_Release

Syntax:
int Modbus_5090_Release(int Port);

Description:
Release the ADAM-5090 COM port of Modbus connection

Parameters:
Port See Table 5-2 on Modbus_5090_Init()

Return value:
0 No error occurs
-1 Error occurs

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-173

A5090_RTU_ForceMultiCoils

Syntax:
bool A5090_RTU_ForceMultiCoils(int iPort, int Slave_Addr,
 int CoilIndex, int TotalPoint,

int TotalByte, unsigned char szData[]);

Description:
“0F HEX” command of Modbus/RTU function code

Parameter Description
iPort COM port number
Slave_Addr Slave address
CoilIndex Coil address
TotalPoint Quantity of coils
TotalByte Byte count
szData[] Force Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4
…

HostData[0]=0xf0;
…

if(!A5090_RTU_ForceMultiCoils(iport, 0x02, 0x64, 0x08, 0x01, HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 adv_printf("Success!!");

Chapter 5 Programming and Function Library

5-174 ADAM-5510 Series User’s Manual

A5090_RTU_ForceSingleCoil

Syntax:
bool A5090_RTU_ForceSingleCoil(int iPort, int i_iAddr, int i_iCoilIndex,
 int i_iData);

Description:
“05 HEX” command of Modbus/RTU function code.

Parameter Description
iPort COM port number
i_iAddr Slave address
i_iCoilIndex Coil address
int i_iData Force Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

if(!A5090_RTU_ForceSingleCoil(iport, 0x02, 0x65, 1))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 adv_printf("Success!!");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-175

A5090_RTU_PresetMultiRegs

Syntax:
bool A5090_RTU_PresetMultiRegs(int iPort, int i_iAddr, int i_iStartReg,

int i_iTotalReg, int i_iTotalByte, unsigned char i_szData[]);

Description:
“10 HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave address
i_iStartReg Starting Address
i_iTotalReg No. of Registers Hi
i_iTotalByte Byte Count
i_szData[] Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

HostData[0]=0x12;
HostData[1]=0x56;
HostData[2]=0x38;
HostData[3]=0x09;

if(!A5090_RTU_PresetMultiRegs(iport, 0x02, 0x64, 2, 4, HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 return;
 }
 else
 adv_printf("Success!!");

Chapter 5 Programming and Function Library

5-176 ADAM-5510 Series User’s Manual

A5090_RTU_PresetSingleReg

Syntax:
bool A5090_RTU_PresetSingleReg(int iPort, int i_iAddr,

 int i_iRegIndex, int i_iData);

Description:
“06 HEX” command of Modbus RTU function code

Parameter Description
IPort COM port number
i_iAddr Slave Address
i_iRegIndex Register Address
i_iData Preset Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

if(!A5090_RTU_PresetSingleReg(iport, 0x02, 0x68, 0x1234))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 return;
 }
 else
 adv_printf("Success!!");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-177

A5090_RTU_ReadCoilStatus

Syntax:
bool A5090_RTU_ReadCoilStatus(int iPort, int i_iAddr,

 int i_iStartIndex, int i_iTotalPoint,
int *o_iTotalByte, unsigned char o_szData[]);

Description:
“01HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Coil Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

if(!A5090_RTU_ReadCoilStatus(iport, 0x02, 0x6E, 0x01, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);

 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-178 ADAM-5510 Series User’s Manual

A5090_RTU_ReadHoldingRegs

Syntax:
bool A5090_RTU_ReadHoldingRegs(int iPort, int i_iAddr,

 int i_iStartIndex, int i_iTotalPoint,
int *o_iTotalByte, unsigned char o_szData[]);

Description:
“03 HEX” command of Modbus RTU function code.

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Register Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

if(!A5090_RTU_ReadHoldingRegs(iport, 0x02, 0x65, 0x01, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);

 }
 adv_printf("\n");
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-179

A5090_RTU_ReadInputRegs

Syntax:
bool A5090_RTU_ReadInputRegs(int iPort, int i_iAddr,
 int i_iStartIndex, int i_iTotalPoint,
 int *o_iTotalByte, unsigned char o_szData[]);

Description:
“04 HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Register Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

if(!A5090_RTU_ReadInputRegs(iport, 0x02, 0x65, 0x01, &DataByteCount,
HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);

 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-180 ADAM-5510 Series User’s Manual

A5090_RTU_ReadInputStatus

Syntax:
bool A5090_RTU_ReadInputStatus(int iPort, int i_iAddr,
 int i_iStartIndex, int i_iTotalPoint,
 int *o_iTotalByte, unsigned char o_szData[]);

Description:
“02 HEX” command of Modbus RTU function code

Parameter Description
iPort COM port number
i_iAddr Slave Address
i_iStartIndex Starting Address
i_iTotalPoint No. of Points
o_iTotalByte Byte Count
o_szData[] Inputs Data

Return value:
TRUE No error occurs
FALSE Error occurs, call Error_Code() for exact error codes

Example:

iport = 74; //slot7, port 4

if(!A5090_RTU_ReadInputStatus(iport, 0x02, 0x64, 0x08, &DataByteCount,

HostData))
 {
 adv_printf("err code is %d\n", Error_Code());
 adv_printf("fail send..");
 }
 else
 {
 adv_printf("Status: ");
 for(tmpcnt=0; tmpcnt<DataByteCount; tmpcnt++)
 {
 adv_printf("%02X", HostData[tmpcnt]);
 }
 adv_printf("\n");
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-181

5.4.7 MODBUS/TCP Functions (MBTCP*.LIB)

Ver_TCP_Mod

Syntax:
void Ver_TCP_Mod(char *vstr);

Description:
Check Modbus/TCP library version.

Parameter Description
vstr Pointer to array of library version information

Return value:
None

Example:

char library_ver[20];

void main(void)
{
 Ver_TCP_Mod(library_ver);
 adv_printf("The version of library is %s\n", library_ver);
}

Chapter 5 Programming and Function Library

5-182 ADAM-5510 Series User’s Manual

Modbus TCP Client Functions:

ReturnErr_code

Syntax:
int ReturnErr_code(void);

Description:
When following function call gets error return, this function can get the
exact error code for user.

ADAMTCP_ForceMultiCoils(), ADAMTCP_ForceSingleCoil(),
ADAMTCP_PresetMultiRegs(), ADAMTCP_PresetSingleReg(),
ADAMTCP_ReadCoilStatus(), ADAMTCP_ReadHoldingRegs(),
ADAMTCP_ReadInputRegs(), ADAMTCP_ReadInputStatus()

Parameter Description
None

Return value:
NULL No error occurs
Erro Code Exception error returned

Error code:
01 ILLEGAL FUNCTION
02 ILLEGAL DATA ADDRESS
03 ILLEGAL DATA VALUE
04 SLAVE DEVICE FAILURE
05 ACKNOWLEDGE
06 SLAVE DEVICE BUSY
07 NEGATIVE ACKNOWLEDGE
08 MEMORY PARITY ERROR

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-183

Example:

SOCKET SO_5510;
…

if(ADAMTCP_ReadCoilStatus(&SO_5510, 50, 0x01, 0x11, 0x10,

&DataByteCount, HostData)<=0)
 {

perror("ADAMTCP_ReadCoilStatus()\n");
adv_printf("err code is %d\n", ReturnErr_code());
ADAMTCP_Disconnect(&SO_5510);
return 0;

 }

Chapter 5 Programming and Function Library

5-184 ADAM-5510 Series User’s Manual

ADAMTCP_Connect

Syntax:
int ADAMTCP_Connect(SOCKET * SO, char * Target_IP, int
Target_Port);

Decription:
Connect to Modbus/TCP Server

Parameter Description
SO A descriptor identifying an unconnected socket
Target_IP Modbus/TCP server IP
Target_Port Server port for the connection

Return value:
TRUE No error occurs
-1 Error occurs when gets the host name
-2 The socket is invalid when initializes the socket
-3 Error occurs when connects to Modbus/TCP server

Example:

if(ADAMTCP_Connect(&SO_5510, ServerIP, Server_Port)<=0)
 {
 perror("ADAMTCP_Connect()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-185

ADAMTCP_Disconnect

Syntax:
bool ADAMTCP_Disconnect(SOCKET * SO);

Description:
Disconnect to Modbus/TCP Server

Parameter
SO A descriptor identifying the connected socket to

Modbus/TCP server

Return value:
TRUE No error occurs
FALSE There is error occurs

Example:

if(ADAMTCP_Connect(&SO_5510, ServerIP, Server_Port)<=0)
 {
 perror("ADAMTCP_Connect()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

Chapter 5 Programming and Function Library

5-186 ADAM-5510 Series User’s Manual

ADAMTCP_ForceMultiCoils

Syntax:
int ADAMTCP_ForceMultiCoils(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int CoilIndex, int TotalPoint,
 int TotalByte, unsigned char szData[]);

Description:
“0F HEX” command of Modbus TCP function code

Parameter Desceription
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
CoilIndex Coil address
TotalPoint Quantity of coils
TotalByte Byte count
szData[] Force Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

HostData[1]=~0x33;
//Query Adam-5000/TCP Server, Adam5056 in Slot 2, Adam5051 is Slot 1,
//force channel status to 0x3333
if(ADAMTCP_ForceMultiCoils(&SO_5510, 50, 0x01, 0x21, 0x10, 0x02,

HostData)<=0)
 {
 perror("ADAMTCP_ForceMultiCoils()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-187

ADAMTCP_ForceSingleCoil

Syntax:
int ADAMTCP_ForceSingleCoil(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int CoilIndex, int Data);

Description:
“05 HEX” command of Modbus TCP function code

Parameter Desceription
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
CoilIndex Coil address
Data Force Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

//Query Adam-5000/TCP Server, Adam5056 in Slot 2, Adam5051 is Slot 1,

force channel 5 to 1
if(ADAMTCP_ForceSingleCoil(&SO_5510, 50, 0x01, 0x25, 1)<=0)
 {
 perror("ADAMTCP_ForceSingleCoil()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

Chapter 5 Programming and Function Library

5-188 ADAM-5510 Series User’s Manual

ADAMTCP_PresetMultiRegs

Syntax:
int ADAMTCP_PresetMultiRegs(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int StartReg, int TotalReg,
 int TotalByte, unsigned char Data[]);

Description:
“10 HEX” command of Modbus TCP function code

Parameter Desceription
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
StartReg Starting address
TotalReg No. of registers
TotalByte Byte count
szData[] Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:
HostData[0]=0x07;
HostData[1]=0x00;
HostData[2]=0x07;
HostData[3]=0x00;

//5024 slot 3, force channel 1&2(type 0~10V) to 4.376V
if(ADAMTCP_PresetMultiRegs(&SO_5510, 50, 0x01, 0x19, 0x02, 4,

HostData)<=0)
 {
 perror("ADAMTCP_PresetMultiRegs()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-189

ADAMTCP_PresetSingleReg

Syntax:
int ADAMTCP_PresetSingleReg(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int RegIndex, int Data);

Description:
“06 HEX”command Modbus TCP function code

Parameter Desceription
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
RegIndex Register address
Data Preset Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

 //Query Adam-5000/TCP, Adam-5024 in slot 4, force channel 1(type 0~10V)

to 5V
if(ADAMTCP_PresetSingleReg(&SO_5510, 50, 0x01, 0x19, 0x07ff)<=0)
 {
 perror("ADAMTCP_PresetSingleReg()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }

Chapter 5 Programming and Function Library

5-190 ADAM-5510 Series User’s Manual

ADAMTCP_ReadCoilStatus

Syntax:
int ADAMTCP_ReadCoilStatus(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int StartIndex, int TotalPoint,
 int * ByteCount, char * wData);

Description:
“01 HEX” command of Modbus TCP function code

Parameter
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
StartIndex Starting address
TotalPoint No. of points
ByteCount Byte count
wData Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

//Query Adam-5000/TCP Server, Adam5051 in Slot 1
if(ADAMTCP_ReadCoilStatus(&SO_5510, 50, 0x01, 0x11, 0x10,

&DataByteCount, HostData)<=0)
 {
 perror("ADAMTCP_ReadCoilStatus()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }
 else
 {
 adv_printf("Adam-5051 Status: ");
 for(tmp=0; tmp<DataByteCount; tmp++)

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-191

 {
 adv_printf("%2X", HostData[tmp]);
 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-192 ADAM-5510 Series User’s Manual

ADAMTCP_ReadHoldingRegs

Syntax:
int ADAMTCP_ReadHoldingRegs(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int StartIndex, int TotalPoint,
 int * ByteCount, char * wData);

Description:
“03 HEX” command of Modbus TCP function code

Parameter
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
StartIndex Starting address
TotalPoint No. of points
ByteCount Byte count
wData Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

//Query Adam-5000/TCP Server, Adam5024 in Slot 3, query all channels
//using readholdingregs to read status
if((errno=ADAMTCP_ReadHoldingRegs(&SO_5510, 50, 0x01, 0x19, 0x08,

&DataByteCount, HostData))<=0)
 {
 perror("ADAMTCP_ReadHoldingRegs()\n");
 adv_printf("errno is %d\n", errno);
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }
 else
 {

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-193

 adv_printf("Adam-5024 Status: ");
 for(tmp=0; tmp<DataByteCount; tmp++)
 {
 adv_printf("%02X", HostData[tmp]);
 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-194 ADAM-5510 Series User’s Manual

ADAMTCP_ReadInputRegs

Syntax:
int ADAMTCP_ReadInputRegs(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int StartIndex, int TotalPoint,
 int * ByteCount, char * wData);

Description:
“04 HEX” command of Modbus TCP function code

Parameter
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
StartIndex Starting address
TotalPoint No. of points
ByteCount Byte count
wData Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

//Query Adam-5000/TCP Server, Adam5024 in Slot 3, query all channels
//using ADAMTCP_ReadInputRegs to read status

if((errno=ADAMTCP_ReadInputRegs(&SO_5510, 50, 0x01, 0x19, 0x08,

&DataByteCount, HostData))<=0)
 {
 perror("ADAMTCP_ReadInputRegs()\n");
 adv_printf("errno is %d\n", errno);
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }
 else
 {

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-195

 adv_printf("Adam-5024 Status: ");
 for(tmp=0; tmp<DataByteCount; tmp++)
 {
 adv_printf("%02X", HostData[tmp]);
 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-196 ADAM-5510 Series User’s Manual

ADAMTCP_ReadInputStatus

Syntax:
int ADAMTCP_ReadInputStatus(SOCKET * SO, int WaitMilliSec,
 int Slave_Addr, int StartIndex, int TotalPoint,
 int * ByteCount, char * wData);

Description:
“02 HEX” command Modbus TCP function code

Parameter
SO The socket connected to Modbus/TCP server
WaitMilliSec Set duration(msec unit) for the response from

Modbus/TCP server
Slave_Addr Slave address
StartIndex Starting address
TotalPoint No. of points
ByteCount Byte count
wData Data

Return value:
TRUE No error occurs
0 Time out error when receive modbus query message

from Modbus/TCP server
-1 Error occurs when send modbus query message to

Modbus/TCP server
-2 Error occurs when receive modbus query message

from Modbus/TCP server

Example:

//Query Adam-5000/TCP Server, Adam5051 in Slot 1
if(ADAMTCP_ReadInputStatus(&SO_5510, 50, 0x01, 0x11, 0x10,

&DataByteCount, HostData)<=0)
 {
 perror("ADAMTCP_ReadInputStatus()\n");
 ADAMTCP_Disconnect(&SO_5510);
 return 0;
 }
 else
 {
 adv_printf("Adam-5051 Status: ");
 for(tmp=0; tmp<DataByteCount; tmp++)

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-197

 {
 adv_printf("%2X", HostData[tmp]);
 }
 adv_printf("\n");
 }

Chapter 5 Programming and Function Library

5-198 ADAM-5510 Series User’s Manual

Modbus TCP Server Functions:

ADAMTCP_ModServer_Create

Syntax:
int ADAMTCP_ModServer_Create(int Host_Port, unsigned long

waittimeout, unsigned int numberConns,
unsigned char * ptr_mem, int size_mem);

Description:
Create a Modbus/TCP Server

Parameter Description
Host_Port The port for Modbus/TCP server
Waittimeout Time out value, 0~0xffffffff milli-second
NumberConns Maximum connections for client
ptr_mem Share memory
size_mem The size of share memory

Return value:
0 No error occurs
91 Invalid socket
92 Error occurs when associates a local socket address with a

socket
93. Error occurs when sets up the socket mode
94 Error occurs when listens to the incoming socket

Example:

if((err_code=ADAMTCP_ModServer_Create(502, 5000, 20,
 (unsigned char *)Share_Mem, sizeof(Share_Mem)))!=0)
 {
 adv_printf("error code is %d/n", err_code);
 }
adv_printf("Server started, wait for connect...\n");

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-199

ADAMTCP_ModServer_Update

Syntax:
int ADAMTCP_ModServer_Update(void);

Description:
Update the Modbus/TCP Server. The Modbus/TCP server needs to
be updated by calling ADAMTCP_ModServer_Update() function
continuously to keep server alive.

Parameter
None

Return value:
1 New message has come in
0 No new message comes in

Example:

while(1)
{

iState = ADAMTCP_ModServer_Update(); //second step
 if(iState)//if has message, show the data at address 40001
 {
 if(pre_data != Share_Mem[0])
 {
 adv_printf("40001 is %X\n", Share_Mem[0]);

//notice: printf() will decrease server performance
 pre_data = Share_Mem[0];
 }
 }
}

Chapter 5 Programming and Function Library

5-200 ADAM-5510 Series User’s Manual

ADAMTCP_ModServer_Release

Syntax:
void ADAMTCP_ModServer_Release(void);

Description:
Release Modbus/TCP Server

Parameter
None

Returned value:
None

Example:

ADAMTCP_ModServer_Release();

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-201

5.4.8 Socket Functions (SOCKET*.LIB)

TCP/IP SOCKETS API Overview

This section describes the SOCKETS API, which is compatible with
the BSD Sockets API and also the Winsock API. The definitions and
prototypes for the C environment are supplied in SOCKET.H, while
the implementation of the C interface is in SOCKET.C.

The SOCKETS API is implemented as a layer on top of the
Compatible API (CAPI) and provides an interface to the socket and
name resolution facilities provided by the Datalight DOS SOCKETS
product. It also provides the database functions of BSD Sockets and
Winsock.

A socket is an end-point for a connection and is defined by the
combination of a host address (also known as an IP address), a port
number (or communicating process ID), and a transport protocol, such
as UDP or TCP. Two connected SOCKETS using the same transport
protocol define a connection. The API uses a socket handle,
sometimes referred to as simply a socket. The socket handle is
required by most function calls in order to access a connection. The
socket handle used is the same as a normal socket as used in CAPI.
A socket handle is obtained by calling the socket() function. A socket
handle can only be used for a single connection. When no longer
required, such as when a connection has been closed, the socket
handle must be released by calling closesocket(). Socket handles
are positive numbers greater than 63.

Types of Service

SOCKETS can be used with one of two service types:
　SOCK_STREAM (using TCP).
　SOCK_DGRAM (using UDP).

A stream connection provides for the bi-directional, reliable,
sequenced, and unduplicated flow of data without record boundaries.
No broadcast facilities can be used with a stream connection.
A datagram connection supports bi-directional flow of data that is not
guaranteed to be sequenced, reliable, or unduplicated. That is, a
process receiving messages on a datagram socket may find
messages duplicated, and, possibly, in an order different from the
order in which it was sent. An important characteristic of a datagram
connection is that record boundaries in data are preserved.

Chapter 5 Programming and Function Library

5-202 ADAM-5510 Series User’s Manual

Datagram connections closely model the facilities found in many
contemporary packet switched networks such as Ethernet. Broadcast
messages may be sent and received.

Establishing Remote Connections

To establish a connection, one side (the server) must execute a
listen() and and subsequent accept() and the other side (the client) a
connect(). A connection consists of the local socket / remote socket
pair. It is therefore possible to have a connection within a single host
as long as the local and remote port values differ. Each host in an IP
network must have at least one host address also known as an IP
address. When a host has more than one physical connection to an IP
network, it may have more than one IP address. An IP address must
be unique within a network. An IP address is 32 bits in length, a port
number 16 bits. A value of zero means “any” while a binary value of all
1s means “all.” The latter value is used for broadcasting purposes.
Using the sockaddr structure conveys the addresses (host/port) to be
used in a connection. A local association is performed by the bind()
function.

Using SOCK_STREAM and SOCK_DGRAM Services

When using the SOCK_STREAM service (TCP), bi-directional data
can be sent using the send() or sendto() functions and received using
the recv() or recvfrom() functions until one side performs a
shutdown(1) or shutdown(2) after which that side cannot send any
more data , but can still receive data until the other side performs a
shutdown(1), shutdown(2) or closesocket().

When using the SOCK_DGRAM service, datagrams can be sent
without first establishing a “connection”. In fact UDP provides a
“connectionless” service although the connection paradigm is used.

Blocking and Non-blocking Operations

The default behavior of socket functions is to block on an operation
and only return when the operation has completed. For example, the
connect() function only returns after the connection has been
performed or an error is encountered. This behavior applies to most
socket function calls, such as recv() and even send(), and especially
on SOCK_STREAM connections.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-203

In many, if not most applications, this behavior is unacceptable in the
single-threaded DOS environment and must be modified. This
modification can be accomplished by making all operations on a
socket non-blocking by calling ioctlsocket() with the FIONBIO option.
If a non-blocking operation is performed, the function always returns
immediately. If the function could not complete without blocking, an
error is returned with errno containing EWOULDBLOCK. This error
should be regarded as a recoverable error and the operation should
be retried, preferably at some later time.

Out of band data

TCP “out of band” or urgent data is not implemented. Setting the
MSG_OOB flag has no effect in recv(), recvfrom(), send() or
sendto(); it will simply be ignored. The SO_OOBINLINE option will
also be ignored and ioctlsocket() with the SIOCATMARK command,
will always return an argument value of 1.

Error Reporting

In general, the C functions implementing the SOCKETS API return a
value of SOCKET_ERROR if the return type is int and an error is
encountered, in which case, the actual error code is returned in a
common variable errno. ERR_RE_ENTRY is returned when the
SOCKETS kernel has been interrupted. This condition can occur only
when the API is called from an interrupt service routine. Programs
designed for this type of operation, such as TSR programs activated
by a real time clock interrupt, should be coded to handle this error by
re-trying the function at a later stage.

Other sources of Information

Many good books have been written on the Sockets API. Here are a
few:

Pocket Guide to TCP/IP Sockets (C Version) by Michael J. Donahoo,
Kenneth L. Calvert

Windows Sockets Network Programming (Addison-Wesley Advanced
Windows Series) by Bob Quinn, et al; Hardcover

Chapter 5 Programming and Function Library

5-204 ADAM-5510 Series User’s Manual

Internetworking with TCP/IP Vol. III Client-Server Programming and
Applications-Windows Sockets Version by Douglas E. Comer, David L.
Stevens (Contributor) ;Hardcover.

The Winsock 1.1 help file (WINSOCK.HLP) is also a very useful
source of information.

Porting Issues

When porting an application from another BSD Sockets environment
like Unix, Linux or Windows (Winsock), a number of issues must be
kept in mind. The most important one is that ROM-DOS is a single-
user, single-task, single-thread operating system. The use of blocking
calls will suspend the system until completion, which may imply an
indefinite time under abnormal or even normal conditions. In addition
no completion event such as a WSAAsyncSelect windows message
for Winsock or a Signal for Unix/Linux is available. Only applications
either using nonblocking operations or the select() function may be
ported successfully. Other applications must be adapted to follow
these guidelines.

Unlike Winsock and like BSD Sockets, an error number is returned in
the errno variable and is only valid directly after an API call. When
writing portable code to run on both SAPI and Winsock, a simple
#define can normally be used i.e.
#ifdef _Windows
#define Errno WSAGetLastError()
#else
#define Errno errno
#endif
.
.

if (Errno == WSAEWOULDBLOCK)
{
.
.
}
.
.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-205

Like in Winsock both the WSAE... of Winsock and the E... error
definitions of BSD may be used e.g. WSAEWOULDBLOCK and
EWOULDBLOCK. The actual error numbers are the same as that of
Winsock, except in cases of DOS error code conflicts e.g.
WSAEINVAL has the same value as the DOS EINVAL. Always using
the symbolic value and not numeric values, will avoid potential
problems.

The function gethostbyaddr() will always fail with errno ==
WSANO_DATA.

All the file/socket operations of BSD Sockets must be translated to the
*socket() versions as used in Winsock e.g. closesocket() instead of
just close().

In Linux/Unix a socket descriptor can be treated the same as a file
descriptor; not so for SAPI or Winsock.

For Winsock the WSAStartup() and WSACleanup() functions must be
called; make it conditional for portable code.

The "socket set" is defined differently for SAPI/Winsock on the one
hand and LINUX/UNIX on the other. Always use the FD_* macros for
portable code.

Function Reference

The following sections describe the individual functions of the
SOCKETS API.

Chapter 5 Programming and Function Library

5-206 ADAM-5510 Series User’s Manual

accept

Syntax:
SOCKET accept (SOCKET so, struct sockaddr *psAddress, int *p
iAddressLen);

Description:
Accepts a connection on a socket.

Parameters
so A descriptor identifying a socket which is listening for

connections after a listen().
psAddress An optional pointer to a buffer which receives the

socket address of the connecting peer.
piAddrLen An optional pointer to an integer which contains the

length of the address psAddress.

Return Value
If no error occurs, accept() returns a value of type SOCKET which is
a descriptor for the accepted packet. Otherwise, a value of
INVALID_SOCKET is returned, and a specific error code is returned in
errno.

The integer referred to by iAddressLen initially contains the amount of
space pointed to by psAddress. On return it will contain the actual
length in bytes of the socket address returned.

Error Codes
ENETDOWN The network subsystem has failed.
EFAULT The *piAddressLen argument is too small

(less than the sizeof a struct sockaddr).
EINVAL listen() was not invoked prior to accept().
EMFILE The queue is empty upon entry to accept()

and there are no descriptors available.
ENOBUFS No buffer space is available.
ENOTSOCK The descriptor is not a socket.
EOPNOTSUPP The referenced socket is not a type that

supports connection-oriented service.
EWOULDBLOCK The socket is marked as non-blocking and no

connections are present to be accepted.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-207

Remarks
This function extracts the first connection on the queue of pending
connections on listening socket so, creates a new socket with the
same properties as so and returns a handle to the new socket. If no
pending connections are present on the queue, and the socket is not
marked as non-blocking, accept() blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending
connections are present on the queue, accept() returns an error as
described below. Socket so remains listening.

The argument psAddress is a result parameter that is filled in with the
socket address of the connecting peer. The piAddressLen is a value-
result parameter; it should initially contain the amount of space
pointed to by psAddress; on return it will contain the actual length (in
bytes) of the socket address returned. This call is used with the
connectionbased SOCK_STREAM socket type. If psAddress and/or p
iAddressLen are equal to NULL, then no information about the remote
peer socket address of the accepted socket is returned.

See Also
bind(), connect(), listen(), select(), socket()

Chapter 5 Programming and Function Library

5-208 ADAM-5510 Series User’s Manual

bind

Syntax:
int bind (SOCKET so, const struct sockaddr * psAddress, int
iAddressLen);

Description:
Associates a local socket address with a socket.

Parameters
so A descriptor identifying an unbound socket.
psAddress The socket address to assign to the socket. The

sockaddr structure is defined as follows:

struct sockaddr {
u_short sa_family;
char sa_data[14];

};
iAddressLen The length of the name psAddress.

Return Value
If no error occurs, bind() returns 0. Otherwise, it returns
SOCKET_ERROR, and a specific error code is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EADDRINUSE The specified address is already in use. (See

the SO_REUSEADDR socket option under
setsockopt().)

EFAULT The iAddressLen argument is too small (less
than the size of a struct sockaddr).

EAFNOSUPPORT The specified address family is not supported
by this protocol.

EINVAL The socket is already bound to an address.
ENOBUFS Not enough buffers available, too many

connections.
ENOTSOCK The descriptor is not a socket.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-209

Remarks
This routine is used on an unconnected datagram or stream socket,
before subsequent connect()s or listen()s. When a socket is created
with socket(), it exists in a name space (address family), but it has no
socket address assigned. bind() establishes the local association
(host address/port number) of the socket by assigning a local address
to an unnamed socket.

In the Internet address family, an address consists of several
components. For SOCK_DGRAM and SOCK_STREAM, the address
consists of three parts: a host address, the protocol number (set
implicitly to UDP or TCP, respectively), and a port number which
identifies the application. If an application does not care what address
is assigned to it, it may specify an Internet address equal to
INADDR_ANY, a port equal to 0, or both. If the Internet address is
equal to INADDR_ANY, any appropriate network interface will be
used; this simplifies application programming in the presence of
multihomed hosts. If the port is specified as 0, SOCKETS will assign a
unique port to the application. The application may use
getsockname() after bind() to learn the address that has been
assigned to it, but note that getsockname() will not necessarily fill in
the Internet address until the socket is connected, since several
Internet addresses may be valid if the host is multi-homed.

See Also
connect(), listen(), getsockname(), setsockopt(), socket().

Chapter 5 Programming and Function Library

5-210 ADAM-5510 Series User’s Manual

closesocket

Syntax:
int closesocket (SOCKET so);

Description:
Closes a socket.

Parameters Description
so A descriptor identifying a socket.

Return Value
If no error occurs, closesocket() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
ENOTSOCK The descriptor is not a socket.
EWOULDBLOCK The socket is marked as nonblocking and

SO_LINGER is set to a nonzero timeout
value.

Remarks
This function closes a socket. More precisely, it releases the socket
descriptor so, so that further references to so will fail with the error
ENOTSOCK. If this is the last reference to the underlying socket, the
associated naming information and queued data are discarded.

The semantics of closesocket() are affected by the socket options
SO_LINGER and SO_DONTLINGER as follows:

Option Interval Type of close Wait for close?

SO_DONTLINGER Don't care Graceful No

SO_LINGER Zero Hard No

SO_LINGER Non-zero Graceful Yes

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-211

If SO_LINGER is set (i.e. the l_onoff field of the linger structure is non-
zero) with a zero timeout interval (l_linger is zero), closesocket() is
not blocked even if queued data has not yet been sent or
acknowledged. This is called a "hard" or "abortive" close, because the
socket's virtual circuit is reset immediately, and any unsent data is lost.
Any recv() call on the remote side of the circuit will fail with
ECONNRESET.

If SO_LINGER is set with a non-zero timeout interval, the
closesocket() call blocks until the remaining data has been sent or
until the timeout expires. This is called a graceful disconnect. Note
that if the socket is set to non-blocking and SO_LINGER is set to a
non-zero timeout, the call to closesocket() will fail with an error of
EWOULDBLOCK.

If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of
the linger structure is zero), the closesocket() call will return
immediately. However, any data queued for transmission will be sent
if possible before the underlying socket is closed. This is also called a
graceful disconnect. Note that in this case SOCKETS may not release
the socket and other resources for an arbitrary period, which may
affect applications which expect to use all available sockets.

See Also
accept(), socket(), ioctlsocket(), setsockopt.

Chapter 5 Programming and Function Library

5-212 ADAM-5510 Series User’s Manual

connect

Syntax:
int connect (SOCKET so, const struct sockaddr * psAddress,
int iAddressLen);

Description:
Establishes a connection to a peer.

Parameters Description
so A descriptor identifying an unconnected

socket.
psAddress The socket address of the peer to which the

socket is to be connected.
iAddressLen The length of psAddress.

Return Value
If no error occurs, connect() returns 0. Otherwise, it returns
SOCKET_ERROR, and a specific error code is returned in errno.

On a blocking socket, the return value indicates success or failure of
the connection attempt.

On a non-blocking socket, if the return value is SOCKET_ERROR and
errno indicates an error code of EWOULDBLOCK, then your
application can either:

1. Use select() to determine the completion of the connection

request by checking if the socket is writeable, or
2. Use recv() until either no error or an error of EWOULDBLOCK is

returned.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available from

the local machine.
EAFNOSUPPORT Addresses in the specified family cannot be

used with this socket.
ECONNREFUSED The attempt to connect was forcefully

rejected.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-213

EDESTADDREQ A destination address is required.
EFAULT The iAddressLen argument is incorrect.
EINVAL The socket is not already bound to an

address.
EISCONN The socket is already connected.
EMFILE No more file descriptors are available.
ENETUNREACH The network can't be reached from this host

at this time.
ENOBUFS No buffer space is available. The socket

cannot be connected.
ENOTSOCK The descriptor is not a socket.
ETIMEDOUT Attempt to connect timed out without

establishing a connection
EWOULDBLOCK The socket is marked as non-blocking and

the connection cannot be completed
immediately. It is possible to select() the
socket while it is connecting by select()ing it
for writing.

Remarks
This function is used to create a connection to the specified foreign
socket address. The parameter so specifies an unconnected
datagram or stream socket. If the socket is unbound, unique values
are assigned to the local association by the system, and the socket is
marked as bound. Note that if the address field of the psAddress
structure is all zeroes, connect() will return the error
EADDRNOTAVAIL.

For stream sockets (type SOCK_STREAM), an active connection is
initiated to the foreign host using psAddress (an address in the name
space of the socket). When the socket call completes successfully,
the socket is ready to send/receive data.

For a datagram socket (type SOCK_DGRAM), a default destination is
set, which will be used on subsequent send() and recv() calls.

See Also
accept(), bind(), getsockname(), socket() and select().

Chapter 5 Programming and Function Library

5-214 ADAM-5510 Series User’s Manual

getpeername

Syntax:
int getpeername (SOCKET so, struct sockaddr * psAddress, int *
piAddressLen);

Description:
Gets the socket address of the peer to which a socket is connected.

Parameters Description
so A descriptor identifying a connected socket.
psAddress The structure which is to receive the socket

address of the peer.
piAddressLen A pointer to the size of the psAddress

structure.

Return Value
If no error occurs, getpeername() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EFAULT The *piAddressLen argument is not large

enough.
ENOTCONN The socket is not connected.
ENOTSOCK The descriptor is not a socket.

Remarks
getpeername() retrieves the socket address of the peer connected to
the socket so and stores it in the struct sockaddr identified by
psAddress. It is used on a connected datagram or stream socket.

On return, the piAddressLen argument contains the actual size of the
socket address returned in bytes.

See Also
bind(), socket(), getsockname().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-215

getsockname

Syntax:
int getsockname (SOCKET so, struct sockaddr * psAddress,
int * piAddressLen);

Description:
Gets the local socket address for a socket.

Parameters Description
so A descriptor identifying a bound socket.
psAddress Receives the socket address (name) of the

socket.
piAddressLen A pointer to the size of the psAddress buffer.

Return Value
If no error occurs, getsockname() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network subsystem

has failed.
EFAULT The *piAddressLen argument is not large enough.
ENOTSOCK The descriptor is not a socket.
EINVAL The socket has not been bound to an address with

bind().

Remarks
getsockname() retrieves the current socket address for the specified
socket descriptor in psAddress. It is used on a bound and/or
connected socket specified by the so parameter.The local association
is returned. This call is especially useful when a connect() call has
been made without doing a bind() first; this call provides the only
means by which you can determine the local association which has
been set by the system.

On return, the piAddressLen argument contains the actual size of the
socket address returned in bytes.

If a socket was bound to INADDR_ANY, indicating that any of the
host's IP addresses should be used for the socket, getsockname()

Chapter 5 Programming and Function Library

5-216 ADAM-5510 Series User’s Manual

will not necessarily return information about the host IP address,
unless the socket has been connected with connect() or accept(). A
SOCKETS application must not assume that the IP address will be
changed from INADDR_ANY unless the socket is connected. This is
because for a multi-homed host the IP address that will be used for
the socket is unknown unless the socket is connected.

See Also
bind(), socket(), getpeername().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-217

getsockopt

Syntax:
int getsockopt (SOCKET so, int iLevel, int iOptname,
char * pcOptval, int * piOptlen);

Description:
Retrieves a socket option.

Parameters
so A descriptor identifying a socket.
iLevel The level at which the option is defined; the only

supported levels are SOL_SOCKET and
IPPROTO_TCP.

iOptname The socket option for which the value is to be
retrieved.

pcOptval A pointer to the buffer in which the value for the
requested option is to be returned.

piOptlen A pointer to the size of the pcOptval buffer.

Return Value
If no error occurs, getsockopt() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EFAULT The piOptlen argument was invalid.
ENOPROTOOPT The option is unknown or unsupported. In

particular, SO_BROADCAST is not supported
on sockets of type SOCK_STREAM, while
SO_ACCEPTCONN, SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER and
SO_OOBINLINE are not supported on
sockets of type SOCK_DGRAM.

ENOTSOCK The descriptor is not a socket.

Chapter 5 Programming and Function Library

5-218 ADAM-5510 Series User’s Manual

Remarks

getsockopt() retrieves the current value for a socket option
associated with a socket of any type, in any state, and stores the
result in pcOptval. Options may exist at multiple protocol levels, but
they are always present at the uppermost "socket'' level. Options
affect socket operations, such as whether an operation blocks or not,
the routing of packets, out -of-band data transfer, etc.

The value associated with the selected option is returned in the buffer
pcOptval. The integer pointed to by piOptlen should originally contain
the size of this buffer; on return, it will be set to the size of the value
returned. For SO_LINGER, this will be the size of a struct linger; for all
other options it will be the size of an integer.

If the option was never set with setsockopt(), then getsockopt()
returns the default value for the option.

The following options are supported for getsockopt(). The Type
identifies the type of data addressed by optval. The TCP_NODELAY
option uses level IPPROTO_TCP; all other options use level
SOL_SOCKET.

Value Type Meaning Default
SO_ACCEPTCONN BOOL Socket is listen()ing. FALSE
SO_BROADCAST BOOL Socket is configured FALSE

for the transmission
of broadcast messages.

SO_DEBUG BOOL Debugging is enabled. FALSE
SO_DONTLINGER BOOL If true, the SO_LINGER TRUE

option is disabled.
SO_DONTROUTE BOOL Routing is disabled. FALSE
SO_ERROR int Retrieve error status 0

and clear.
SO_KEEPALIVE BOOL Keepalives are being sent. FALSE
SO_LINGER struct linger* Returns the current linger l_onoff is 0

options.
SO_OOBINLINE BOOL Out-of-band data is being FALSE

received in the normal data
stream.

SO_RCVBUF int Buffer size for receives 1460
SO_REUSEADDR BOOL The socket may be bound FALSE

to an address which is
already in use.

SO_SNDBUF int Buffer size for sends 1460
SO_TYPE int The type of the socket (e.g. As created

SOCK_STREAM).

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-219

TCP_NODELAY BOOL Disables the Nagle algorithm FALSE

for send coalescing.

Calling getsockopt() with an unsupported option will result in an error
code of ENOPROTOOPT being returned from WSAGetLastError().

See Also
setsockopt(), socket().

Chapter 5 Programming and Function Library

5-220 ADAM-5510 Series User’s Manual

htonl

Syntax:
u_long htonl (u_long ulHostlong);

Description:
Converts a u_long from host to network byte order.

Parameters Description
ulHostlong A 32-bit number in host byte order.

Return Value
htonl() returns the value in network byte order.

Remarks
This routine takes a 32-bit number in host byte order and returns a 32-
bit number in network byte order.

See Also
htons(), ntohl(), ntohs().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-221

htons

Syntax
u_short htons (u_short usHostshort);

Description:
Converts a u_short from host to network byte order.

Parameters Description
sHostshort A 16-bit number in host byte order.

Return Value
htons() returns the value in network byte order.

Remarks
This routine takes a 16-bit number in host byte order and returns a 16-
bit number in network byte order.

See Also
htonl(), ntohl(), ntohs().

Chapter 5 Programming and Function Library

5-222 ADAM-5510 Series User’s Manual

inet_addr

Syntax:
unsigned long inet_addr (const char * pc);

Description:
Converts a string containing a dotted address into an in_addr.

Parameters Description
pc A character string representing a number expressed

in the Internet standard ".'' notation.

Return Value
If no error occurs, inet_addr() returns an unsigned long containing a
suitable binary representation of the Internet address given. If the
passed-in string does not contain a legitimate Internet address, for
example if a portion of an "a.b.c.d" address exceeds 255, inet_addr()
returns the value INADDR_NONE.

Remarks
This function interprets the character string specified by the pc
parameter. This string represents a numeric Internet address
expressed in the Internet standard ".'' notation. The value returned is a
number suitable for use as an Internet address. All Internet addresses
are returned in network order (bytes ordered from left to right).

Internet Addresses

Values specified using the ".'' notation take one of the following forms:

a.b.c.d a.b.c a.b a

When four parts are specified, each is interpreted as a byte of data
and assigned, from left to right, to the four bytes of an Internet
address. Note that when an Internet address is viewed as a 32-bit
integer quantity on the Intel architecture, the bytes referred to above
appear as "d.c.b.a''. That is, the bytes on an Intel processor are
ordered from right to left.

Note: The following notations are only used by Berkeley, and nowhere
else on the Internet. In the interests of compatibility with their software,
they are supported as specified.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-223

When a three part address is specified, the last part is interpreted as a
16-bit quantity and placed in the right most two bytes of the network
address. This makes the three part address format convenient for
specifying Class B network addresses as "128.net.host''.

When a two part address is specified, the last part is interpreted as a
24-bit quantity and placed in the right most three bytes of the network
address. This makes the two part address format convenient for
specifying Class A network addresses as "net.host''.

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

See Also
inet_ntoa()

Chapter 5 Programming and Function Library

5-224 ADAM-5510 Series User’s Manual

inet_ntoa

Syntax:
char * inet_ntoa (struct in_addr sIn);

Description:
Converts a network address into a string in dotted format.

Parameters
sIn A structure which represents an Internet host

address.

Return Value
If no error occurs, inet_ntoa() returns a char pointer to a static buffer
containing the text address in standard ".'' notation. Otherwise, it
returns NULL. The data should be copied before another SOCKETS
call is made.

Remarks
This function takes an Internet address structure specified by the sIn
parameter. It returns an ASCII string representing the address in ".''
notation as "a.b.c.d''. Note that the string returned by inet_ntoa()
resides in memory which is allocated by SOCKETS. The application
should not make any assumptions about the way in which the memory
is allocated. The data is guaranteed to be valid until the next
SOCKETS API call, but no longer.

See Also
inet_addr().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-225

ioctlsocket

Syntax:
int ioctlsocket (SOCKET so, long lCmd, u_long * pulArgp);

Description:
Controls the mode of a socket.

Parameters Description
so A descriptor identifying a socket.
lCmd The command to perform on the socket so.
pulArgp A pointer to a parameter for lCmd.

Return Value
Upon successful completion, the ioctlsocket() returns 0. Otherwise, a
value of SOCKET_ERROR is returned, and a specific error code is
returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the network subsystem

has failed.
EINVAL lCmd is not a valid command, or pulArgp is not an

acceptable parameter for lCmd, or the command is
not applicable to the type of socket supplied

ENOTSOCK The descriptor so is not a socket.

Remarks
This routine may be used on any socket in any state. It is used to get
or retrieve operating parameters associated with the socket,
independent of the protocol and communications subsystem. The
following commands are supported:

Command Semantics
FIONBIO Enable or disable non-blocking mode on the socket

so. pulArgp points at an unsigned long, which is
non-zero if non-blocking mode is to be enabled and
zero if it is to be disabled. When a socket is created, it
operates in blocking mode (i.e. non-blocking mode is
disabled). This is consistent with BSD sockets.

FIONREAD Determine the amount of data which can be read

Chapter 5 Programming and Function Library

5-226 ADAM-5510 Series User’s Manual

atomically from socket so. pulArgp points at an
unsigned long in which ioctlsocket() stores the
result. If so is of type SOCK_STREAM, FIONREAD
returns the total amount of data which may be read in
a single recv(); this is normally the same as the total
amount of data queued on the socket. If so is of type
SOCK_DGRAM, FIONREAD returns the size of the
first datagram queued on the socket.

SIOCATMARK Determine whether or not all out-of-band data has
been read. This applies only to a socket of type
SOCK_STREAM which has been configured for in-
line reception of any out-of-band data
(SO_OOBINLINE). If no out-of-band data is waiting to
be read, the operation returns TRUE. Otherwise it
returns FALSE, and the next recv() or recvfrom()
performed on the socket will retrieve some or all of
the data preceding the "mark"; the application should
use the SIOCATMARK operation to determine
whether any remains. If there is any normal data
preceding the "urgent" (out of band) data, it will be
received in order. (Note that a recv() or recvfrom()
will never mix out-of-band and normal data in the
same call.) argp points at a BOOL in which
ioctlsocket() stores the result.

Compatibility
This function is a subset of ioctl() as used in Berkeley sockets. In
particular, there is no command which is equivalent to FIOASYNC,
while SIOCATMARK is the only socketlevel command which is
supported.

See Also
socket(), setsockopt(), getsockopt().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-227

listen

Syntax:
int listen (SOCKET so, int iBacklog);

Description:
Establishes a socket to listen for incoming connection.

Parameters Description
so A descriptor identifying a bound, unconnected socket.
iBacklog The maximum length to which the queue of pending

connections may grow.

Return Value
If no error occurs, listen() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EADDRINUSE An attempt has been made to listen() on an

address in use.
EINVAL The socket has not been bound with bind() or

is already connected.
EISCONN The socket is already connected.
EMFILE No more file descriptors are available.
ENOBUFS No buffer space is available.
ENOTSOCK The descriptor is not a socket.
EOPNOTSUPP The referenced socket is not of a type that

supports the listen() operation.

Remarks
To accept connections, a socket is first created with socket(), a
backlog for incoming connections is specified with listen(), and then
the connections are accepted with accept(). listen() applies only to
sockets that support connections, i.e. those of type SOCK_STREAM.
The socket so is put into "passive'' mode where incoming connections
are acknowledged and queued pending acceptance by the process.

This function is typically used by servers that could have more than

Chapter 5 Programming and Function Library

5-228 ADAM-5510 Series User’s Manual

one connection request at a time: if a connection request arrives with
the queue full, the client will receive an error with an indication of
ECONNREFUSED.

Compatibility
iBacklog is limited (silently) to 5. As in 4.3BSD, illegal values (less
than 1 or greater than 5) are replaced by the nearest legal value.

See Also
accept(), connect(), socket().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-229

ntohl

Syntax:
u_long ntohl (u_long ulNetlong);

Description:
Converts a u_long from network to host byte order.

Parameters Description
ulNetlong A 32-bit number in network byte order.

Return Value
ntohl() returns the value in host byte order.

Remarks
This routine takes a 32-bit number in network byte order and returns a
32-bit number in host byte order.

See Also
htonl(), htons(), ntohs().

Chapter 5 Programming and Function Library

5-230 ADAM-5510 Series User’s Manual

ntohs

Syntax
u_short ntohs (u_short usNetshort);

Description:
Converts a u_short from network to host byte order.

Return Value
ntohs() returns the value in host byte order.

Parameters Description
usNetshort A 16-bit number in network byte order.

Remarks
This routine takes a 16-bit number in network byte order and returns a
16-bit number in host byte order.

See Also
htonl(), htons(), ntohl().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-231

recv

Syntax:
int recv (SOCKET so, char * pcbuf, int iLen, int iFlags);

Description:
Receives data from a socket.

Parameters Description
so A descriptor identifying a connected socket.
pcBuf A buffer for the incoming data.
iLen The length of pcBuf.
iFlags Specifies the way in which the call is made.

Return Value
If no error occurs, recv() returns the number of bytes received. If the
connection has been closed, it returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
ENOTCONN The socket is not connected.
ENOTSOCK The descriptor is not a socket.
EOPNOTSUPP MSG_OOB was specified, but the socket is

not of type SOCK_STREAM.
ESHUTDOWN The socket has been shutdown; it is not

possible to recv() on a socket after shutdown()
has been invoked with how set to 0 or 2.

EWOULDBLOCK The socket is marked as non-blocking and
the receive operation would block.

EMSGSIZE The datagram was too large to fit into the
specified buffer and was truncated.

EINVAL The socket has not been bound with bind().
ECONNABORTED The virtual circuit was aborted due to timeout

or other failure.
ECONNRESET The virtual circuit was reset by the remote

side.

Chapter 5 Programming and Function Library

5-232 ADAM-5510 Series User’s Manual

Remarks
This function is used on connected datagram or stream sockets
specified by the so parameter and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information as is
currently available up to the size of the buffer supplied is returned. If
the socket has been configured for in-line reception of out-of-band
data (socket option SO_OOBINLINE) and out-of-band data is unread,
only out-of-band data will be returned. The application may use the
ioctlsocket() SIOCATMARK to determine whether any more out-of-
band data remains to be read.

For datagram sockets, data is extracted from the first enqueued
datagram, up to the size of the buffer supplied. If the datagram is
larger than the buffer supplied, the buffer is filled with the first part of
the datagram, the excess data is lost, and recv() returns the error
EMSGSIZE.

If no incoming data is available at the socket, the recv() call waits for
data to arrive unless the socket is non-blocking. In this case a value of
SOCKET_ERROR is returned with the error code set to
EWOULDBLOCK. The select() call may be used to determine when
more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut
down the connection gracefully, a recv() will complete immediately
with 0 bytes received. If the connection has been reset, a recv() will
fail with the error ECONNRESET.

iFlags may be used to influence the behavior of the function
invocation beyond the options specified for the associated socket.
That is, the semantics of this function are determined by the socket
options and the iFlags parameter. The latter is constructed by or-ing
any of the following values:

Value Meaning
MSG_ PEEK Peek at the incoming data. The data is copied

into the buffer but is not removed from the input
queue.

MSG_OOB Process out-of-band data.

See Also
recvfrom(), ,recv(), send(), select(), socket()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-233

recvfrom

Syntax
int recvfrom (SOCKET so, char * pcBuf, int iLen, int iFlags,
struct sockaddr * psFrom, int * piFromlen);

Description:
Receives a datagram and store the source address.

Parameters Description
so A descriptor identifying a bound socket.
pcBuf A buffer for the incoming data.
iLen The length of pcBuf.
iFlags Specifies the way in which the call is made.
psFrom An optional pointer to a buffer which will hold the

source address upon return.
piFromlen An optional pointer to the size of the psFrom buffer.

Return Value
If no error occurs, recvfrom() returns the number of bytes received. If
the connection has been closed, it returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EFAULT The piFromlen argument was invalid: the

psFrom buffer was too small to accommodate
the peer address.

EINVAL The socket has not been bound with bind().
ENOTCONN The socket is not connected

(SOCK_STREAM only).
ENOTSOCK The descriptor is not a socket.
EOPNOTSUPP MSG_OOB was specified, but the socket is

not of type SOCK_STREAM.
ESHUTDOWN The socket has been shutdown; it is not

possible to recvfrom() on a socket after
shutdown() has been invoked with how set to
0 or 2.

EWOULDBLOCK The socket is marked as non-blocking and

Chapter 5 Programming and Function Library

5-234 ADAM-5510 Series User’s Manual

the recvfrom() operation would block.

EMSGSIZE The datagram was too large to fit into the
specified buffer and was truncated.

ECONNABORTED The virtual circuit was aborted due to timeout
or other failure.

ECONNRESET The virtual circuit was reset by the remote
side.

Remarks
This function is used to read incoming data on a (possibly connected)
socket and capture the address from which the data was sent.

For sockets of type SOCK_STREAM, as much information as is
currently available up to the size of the buffer supplied is returned. If
the socket has been configured for in-line reception of out-of-band
data (socket option SO_OOBINLINE) and out-of-band data is unread,
only out-of-band data will be returned. The application may use the
ioctlsocket() SIOCATMARK to determine whether any more out-of-
band data remains to be read. The psFrom and piFromlen parameters
are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued
datagram, up to the size of the buffer supplied. If the datagram is
larger than the buffer supplied, the buffer is filled with the first part of
the message, the excess data is lost, and recvfrom() returns the error
code EMSGSIZE.

If psFrom is non-zero, and the socket is of type SOCK_DGRAM, the
network address of the peer which sent t he data is copied to the
corresponding struct sockaddr. The value pointed to by piFromlen is
initialized to the size of this structure, and is modified on return to
indicate the actual size of the address stored there.

If no incoming data is available at the socket, the recvfrom() call waits
for data to arrive unless the socket is non-blocking. In this case a
value of SOCKET_ERROR is returned with the error code set to
EWOULDBLOCK. The select() call may be used to determine when
more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut
down the connection gracefully, a recvfrom() will complete
immediately with 0 bytes received. If the connection has been reset
recv() will fail with the error ECONNRESET.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-235

iFlags may be used to influence the behavior of the function
invocation beyond the options specified for the associated socket.
That is, the semantics of this function aredetermined by the socket
options and the iFlags parameter. The latter is constructed by or-ing
any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the

buffer but is not removed from the input queue.
MSG_OOB Process out-of-band data.

See Also
recv(), send(), socket().

Chapter 5 Programming and Function Library

5-236 ADAM-5510 Series User’s Manual

select

Syntax:
int select (int iNfds, fd_set * psReadfds, fd_set * psWritefds,
fd_set * psExceptfds, const struct timeval * psTimeout);

Description:
Determines the status of one or more sockets, waiting if necessary.

Parameters Description
iNfds This argument is ignored and included only for the

sake of compatibility.
psRadfds An optional pointer to a set of sockets to be checked

for readability.
psWritefds An optional pointer to a set of sockets to be checked

for writability
psExceptfds An optional pointer to a set of sockets to be checked

for errors.
psTimeout The maximum time for select() to wait, or NULL for

blocking operation.

Return Value
select() returns the total number of descriptors which are ready and
contained in the fd_set structures, 0 if the time limit expired, or
SOCKET_ERROR if an error occurred. If the return value is
SOCKET_ERROR, errno contains the specific error code.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EINVAL The psTimeout value is not valid.
ENOTSOCK One of the descriptor sets contains an entry

which is not a socket.

Remarks
This function is used to determine the status of one or more sockets.
For each socket, the caller may request information on read, write or
error status. The set of sockets for which a given status is requested
is indicated by an fd_set structure. Upon return, the structure is
updated to reflect the subset of these sockets which meet the
specified condition, and select() returns the number of sockets
meeting the conditions. A set of macros is provided for manipulating

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-237

an fd_set. These macros are compatible with those used in the
Berkeley software, but the underlying representation is completely
different and the same as that used in Winsock.

The parameter psReadfds identifies those sockets which are to be
checked for readability. If the socket is currently listen()ing, it will be
marked as readable if an incoming connection request has been
received, so that an accept() is guaranteed to complete without
blocking. For other sockets, readability means that queued data is
available for reading or, for sockets of type SOCK_STREAM, that the
virtual socket corresponding to the socket has been closed, so that a
recv() or recvfrom() is guaranteed to complete without blocking. If the
virtual circuit was closed gracefully, then a recv() will return
immediately with 0 bytes read; if the virtual circuit was reset, then a
recv() will complete immediately with the error code ECONNRESET.
The presence of out-of-band data will be checked if the socket option
SO_OOBINLINE has been enabled (see setsockopt()).

The parameter psWritefds identifies those sockets which are to be
checked for writability. If a socket is connect()ing (non-blocking),
writability means that the connection establishment successfully
completed. If the socket is not in the process of connect()ing,
writability means that a send() or sendto() will complete without
blocking.

The parameter psExceptfds identifies those sockets which are to be
checked for the presence of out-of-band data or any exceptional error
conditions. Note that out -of-band data will only be reported in this way
if the option SO_OOBINLINE is FALSE. For a SOCK_STREAM, the
breaking of the connection by the peer or due to KEEPALIVE failure
will be indicated as an exception. If a socket is connect()ing (non-
blocking), failure of the connect attempt is indicated in psExceptfds.

Any of psReadfds, psWritefds, or psExceptfds may be given as NULL
if no descriptors are of interest.

Four macros are defined in the header file socket.h for manipulating
the descriptor sets. The variable FD_SETSIZE determines the
maximum number of descriptors in a set. (The default value of
FD_SETSIZE is 16, which may be modified by #defining
FD_SETSIZE to another value before #including socket.h.) Internally,
an fd_set is represented as an array of SOCKETs. The macros are:

Chapter 5 Programming and Function Library

5-238 ADAM-5510 Series User’s Manual

FD_CLR(so, *psSet) Removes the descriptor so from set.
FD_ISSET(so, *pSset) Nonzero if so is a member of the set, zero

otherwise.
FD_SET(so, *psSet) Adds descriptor so to set.
FD_ZERO(*psSet) Initializes the set to the NULL set.

The parameter psTimeout controls how long the select() may take to
comp lete. If psTimeout is a null pointer, select() will block indefinitely
until at least one descriptor meets the specified criteria. Otherwise,
psTtimeout points to a struct timeval which specifies the maximum
time that select() should wait before returning. If the timeval is
initialized to {0, 0}, select() will return immediately; this is used to
"poll" the state of the selected sockets.

See Also
accept(), connect(), recv(), recvfrom(), send().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-239

send

Syntax:
int send (SOCKET so, const char * pcBuf, int iLen, int iFlags);

Description:
Sends data on a connected socket.

Parameters Description
so A descriptor identifying a connected socket.
pcBuf A buffer containing the data to be transmitted.
iLen The length of the data in pcBuf.
iFlags Specifies the way in which the call is made.

Return Value
If no error occurs, send() returns the total number of characters sent.
(Note that this may be less than the number indicated by len.)
Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EACCES The requested address is a broadcast

address, but the appropriate flag was not set.
EFAULT The pcBuf argument is not in a valid part of

the user address space.
ENETRESET The connection must be reset because

SOCKETS dropped it.
ENOBUFS SOCKETS reports a buffer deadlock.
ENOTCONN The socket is not connected.
ENOTSOCK The descriptor is not a socket.
EOPNOTSUPP MSG_OOB was specified, but the socket is

not of type SOCK_STREAM.
ESHUTDOWN The socket has been shutdown; it is not

possible to send() on a socket after
shutdown() has been invoked with how set to
1 or 2.

EWOULDBLOCK The socket is marked as non-blocking and
the requested operation would block.

Chapter 5 Programming and Function Library

5-240 ADAM-5510 Series User’s Manual

EMSGSIZE The socket is of type SOCK_DGRAM, and

the datagram is larger than the maximum
supported by SOCKETS.

EINVAL The socket has not been bound with bind().
ECONNABORTED The virtual circuit was aborted due to timeout

or other failure.
ECONNRESET The virtual circuit was reset by the remote

side.

Remarks
send() is used on connected datagram or stream sockets and is used
to write outgoing data on a socket. For datagram sockets, care must
be taken not to exceed the maximum IP packet size of the underlying
subnets. If the data is too long to pass atomically through the
underlying protocol the error EMSGSIZE is returned, and no data is
transmitted.

Note that the successful completion of a send() does not indicate that
the data was successfully delivered.

If no buffer space is available within the transport system to hold the
data to be transmitted, send() will block unless the socket has been
placed in a non-blocking I/O mode. On non-blocking SOCK_STREAM
sockets, the number of bytes written may be between 1 and the
requested length, depending on buffer availability on both the local
and foreign hosts. The select() call may be used to determine when it
is possible to send more data.

iFlags may be used to influence the behavior of the function
invocation beyond the options specified for the associated socket.
That is, the semantics of this function are determined by the socket
options and the flags parameter. The latter is constructed by oring any
of the following values:

Value Meaning
MSG_DONTROUTE Specifies that the data should not be subject

to routing
MSG_OOB Send out-of-band data

(SOCK_STREAM only)

See Also
recv(), recvfrom(), socket(), sendto().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-241

sendto

Syntax:
int sendto (SOCKET so, const char * pcBuf, int iLen, int iFlags,
const struct sockaddr * psTo, int iTolen);

Description:
Sends data to a specific destination.

Parameters
so A descriptor identifying a socket.
pcBuf A buffer containing the data to be transmitted.
iLen The length of the data in pcBuf.
iFlags Specifies the way in which the call is made.
PsTo An optional pointer to the address of the target

socket.
iITolen The size of the address in to.

Return Value
If no error occurs, sendto() returns the total number of characters
sent. (Note that this may be less than the number indicated by len.)
Otherwise, a value of SOCKET_ERROR is returned, and a specific
error code is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EACCES The requested address is a broadcast

address, but the appropriate flag was not set.
EFAULT The pcBuf or psTo parameters are not part of

the user address space, or the psTo
argument is too small (less than the sizeof a
struct sockaddr).

ENETRESET The connection must be reset because
SOCKETS dropped it.

ENOBUFS SOCKETS reports a buffer deadlock.
ENOTCONN The socket is not connected

(SOCK_STREAM only).
ENOTSOCK The descriptor is not a socket.
EOPNOTSUPP MSG_OOB was specified, but the socket is

not of type SOCK_STREAM.

Chapter 5 Programming and Function Library

5-242 ADAM-5510 Series User’s Manual

ESHUTDOWN The socket has been shutdown; it is not
 possible to sendto() on a socket after
 shutdown() has been invoked with how set to

1 or 2.
EWOULDBLOCK The socket is marked as non-blocking and

the requested operation would block.
EMSGSIZE The socket is of type SOCK_DGRAM, and

the datagram is larger than the maximum
supported by SOCKETS.

ECONNABORTED The virtual circuit was aborted due to timeout
or other failure.

ECONNRESET The virtual circuit was reset by the remote
side.

EADDRNOTAVAIL The specified address is not available from
the local machine.

EAFNOSUPPORT Addresses in the specified family cannot be
used with this socket.

EDESTADDRREQ A destination address is required.
ENETUNREACH The network can't be reached from this host

at this time.

Remarks
sendto() is used on datagram or stream sockets and is used to write
outgoing data on a socket. For datagram sockets, care must be taken
not to exceed the maximum IP packet size of the underlying subnets.
If the data is too long to pass atomically through the underlying
protocol the error EMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a sendto() does not indicate
that the data was successfully delivered.

sendto() is normally used on a SOCK_DGRAM socket to send a
datagram to a specific peer socket identified by the psTo parameter.
On a SOCK_STREAM socket, the psTo and iTolen parameters are
ignored; in this case the sendto() is equivalent to send().

To send a broadcast (on a SOCK_DGRAM only), the address in the to
parameter should be constructed using the special IP address
INADDR_BROADCAST (defined in socket.h) together with the
intended port number. It is generally inadvisable for a broadcast
datagram to exceed the size at which fragmentation may occur, which

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-243

implies that the data portion of the datagram (excluding headers)
should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the
data to be transmitted, sendto() will block unless the socket has been
placed in a non-blocking I/O mode. On non-blocking SOCK_STREAM
sockets, the number of bytes written may be between 1 and the
requested length, depending on buffer availability on both t he local
and foreign hosts. The select() call may be used to determine when it
is possible to send more data.

iFlags may be used to influence the behavior of the function
invocation beyond the options specified for the associated socket.
That is, the semantics of this function are determined by the socket
options and the iFlags parameter. The latter is constructed by or-ing
any of the following values:

Value Meaning
MSG_DONTROUTE Specifies that the data should not be subject

to routing.
MSG_OOB Send out-of-band data (SOCK_STREAM only

Out of band data)

See Also
recv(), recvfrom(), socket(), send().

Chapter 5 Programming and Function Library

5-244 ADAM-5510 Series User’s Manual

setsockopt

Syntax:
int setsockopt (SOCKET so, int level, int optname,
const char * optval, int optlen);

Description:
Sets a socket option.

Parameters Description
so A descriptor identifying a socket.
level The level at which the option is defined; the only

supported levels are SOL_SOCKET and
IPPROTO_TCP.

optname The socket option for which the value is to be set.
optval A pointer to the buffer in which the value for the

requested option is supplied.
optlen The size of the optval buffer.

Return Value
If no error occurs, setsockopt() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network

subsystem has failed.
EFAULT optval is not in a valid part of the process

address space.
EINVAL level is not valid, or the information in optval

is not valid.
ENETRESET Connection has timed out when

SO_KEEPALIVE is set.
ENOPROTOOPT The option is unknown or unsupported. In

particular, SO_BROADCAST is not supported
on sockets of type SOCK_STREAM, while
SO_DONTLINGER, SO_KEEPALIVE,
SO_LINGER and SO_OOBINLINE are not
supported on sockets of type SOCK_DGRAM.

ENOTCONN Connection has been reset when
SO_KEEPALIVE is set.

ENOTSOCK The descriptor is not a socket.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-245

Remarks
setsockopt() sets the current value for a socket option associated
with a socket of any type, in any state. Although options may exist at
multiple protocol levels, this specification only defines options that
exist at the uppermost "socket'' level. Options affect socket operations,
such as whet her expedited data is received in the normal data stream,
whether broadcast messages may be sent on the socket, etc.

There are two types of socket options: Boolean options that enable or
disable a feature or behavior, and options which require an integer
value or structure. To enable a Boolean option, optval points to a
nonzero integer. To disable the option optval points to an integer
equal to zero. optlen should be equal to sizeof(int) for Boolean options.
For other options, optval points to the an integer or structure that
contains the desired value for the option, and optlen is the length of
the integer or structure.

SO_LINGER controls the action taken when unsent data is queued on
a socket and a closesocket() is performed. See closesocket() for a
description of the way in which the SO_LINGER settings affect the
semantics of closesocket(). The application sets the desired behavior
by creating a struct linger (pointed to by the optval argument) with the
following elements:

struct linger {
int l_onoff;
int l_linger;

}

To enable SO_LINGER, the application should set l_onoff to a non-
zero value, set l_linger to 0 or the desired timeout (in seconds), and
call setsockopt(). To enable SO_DONTLINGER (i.e. disable
SO_LINGER) l_onoff should be set to zero and setsockopt() should
be called.

By default, a socket may not be bound (see bind()) to a local address
which is already in use. On occasions, however, it may be desirable to
"re-use" an address in this way. Since every connection is uniquely
identified by the combination of local and remote addresses, there is
no problem with having two sockets bound to the same local address
as long as the remote addresses are different. To inform SOCKETS
that a bind() on a socket should not be disallowed because the
desired address is already in use by another socket, the application

Chapter 5 Programming and Function Library

5-246 ADAM-5510 Series User’s Manual

should set the SO_REUSEADDR socket option for the socket before
issuing the bind(). Note that the option is interpreted only at the time
of the bind(): it is therefore unnecessary (but harmless) to set the
option on a socket which is not to be bound to an existing address,
and setting or resetting the option after the bind() has no effect on this
or any other socket.

An application may request that SOCKETS enable the use of "keep-
alive" packets on TCP connections by turning on the SO_KEEPALIVE
socket option. If a connection is dropped as the result of "keep -alives"
the error code ENETRESET is returned to any calls in progress on the
socket, and any subsequent calls will fail with ENOTCONN.

The TCP_NODELAY option disables the Nagle algorithm. The Nagle
algorithm is used to reduce the number of small packets sent by a
host by buffering unacknowledged send data until a full-size packet
can be sent. However, for some applications this algorithm can
impede performance, and TCP_NODELAY may be used to turn it off.
Application writers should not set TCP_NODELAY unless the impact
of doing so is well-understood and desired, since setting
TCP_NODELAY can have a significant negative impact of network
performance. TCP_NODELAY is the only supported socket option
which uses level IPPROTO_TCP; all other options use level
SOL_SOCKET.

The following options are supported for setsockopt(). The Type
identifies the type of data addressed by optval.

Value Type Meaning

SO_BROADCAST BOOL Allow transmission of broadcast
 messages on the socket.
SO_DEBUG BOOL Record debugging information.
SO_DONTLINGER BOOL Don't block close waiting for unsent

data to be sent. Setting this option is
equivalent to setting SO_LINGER
with l_onoff set to zero.

SO_DONTROUTE BOOL Don't route: send directly to interface.
SO_KEEPALIVE BOOL Send keepalives
SO_LINGER struct linger * Linger on close if unsent data is

present
SO_OOBINLINE BOOL Receive out-of-band data in the

normal data stream.
SO_RCVBUF Int Specify buffer size for receives
SO_REUSEADDR BOOL Allow the socket to be bound to an

address which is already in use.
(See bind().)

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-247

SO_SNDBUF Int Specify buffer size for sends.
TCP_NODELAY BOOL Disables the Nagle algorithm for

send coalescing.

BSD options not supported for setsockopt() are:

Value Type Meaning
SO_ACCEPTCONN BOOL Socket is listening
SO_ERROR Int Get error status and clear
SO_RCVLOWAT Int Receive low water mark
SO_RCVTIMEO Int Receive timeout
SO_SNDLOWAT Int Send low water mark
SO_SNDTIMEO Int Send timeout
SO_TYPE Int Type of the socket
IP_OPTIONS Set options field in IP header.

See Also
bind(), getsockopt(), ioctlsocket(), socket().

Chapter 5 Programming and Function Library

5-248 ADAM-5510 Series User’s Manual

shutdown

Syntax:
int shutdown (SOCKET so, int how);

Description:
Disables sends and/or receives on a socket.

Parameters Description
so A descriptor identifying a socket.
how A flag that describes what types of operation will no

longer be allowed.

Return Value
If no error occurs, shutdown() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code is returned in
errno.

Error Codes
ENETDOWN SOCKETS has detected that the network subsystem

has failed.
EINVAL how is not valid.
ENOTCONN The socket is not connected (SOCK_STREAM only).
ENOTSOCK The descriptor is not a socket.

Remarks
shutdown() is used on all types of sockets to disable reception,
transmission, or both.

If how is 0, subsequent receives on the socket will be disallowed. This
has no effect on the lower protocol layers. For TCP, the TCP window
is not changed and incoming data will be accepted (but not
acknowledged) until the window is exhausted. For UDP, incoming
datagrams are accepted and queued. In no case will an ICMP error
packet be generated.

If how is 1, subsequent sends are disallowed. For TCP sockets, a FIN
will be sent.

Setting how to 2 disables both sends and receives as described
above.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-249

Note that shutdown() does not close the socket, and resources
attached to the socket will not be freed until closesocket() is invoked.

Comments
shutdown() does not block regardless of the SO_LINGER setting on
the socket. An application should not re-use a socket after it has been
shut down.

See Also
connect(), socket().

Chapter 5 Programming and Function Library

5-250 ADAM-5510 Series User’s Manual

socket

Syntax:
SOCKET socket (int af, int type, int protocol);

Description:
Creates a socket.

Parameters
af An address format specification. The only format

currently supported is PF_INET,
which is the ARPA Internet address format.

type A type specification for the new socket.
Protocol A particular protocol to be used with the socket, or 0 if

the caller does not wish to specify a protocol.

Return Value
If no error occurs, socket() returns a descriptor referencing the new
socket. Otherwise, a value of INVALID_SOCKET is returned, and a
specific error code is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
EAFNOSUPPORT The specified address family is not

supported.
EMFILE No more file descriptors are

available.
ENOBUFS No buffer space is available. The

socket cannot be created.
EPROTONOSUPPORT The specified protocol is not

supported.
EPROTOTYPE The specified protocol is the wrong

type for this socket.
ESOCKTNOSUPPORT The specified socket type is not

supported in this address family.

Remarks
socket() allocates a socket descriptor of the specified address family,
data type and protocol, as well as related resources. If a protocol is
not specified (i.e. equal to 0), the default for the specified connection
mode is used.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-251

Only a single protocol exists to support a particular socket type using
a given address format. However, the address family may be given as
AF_UNSPEC (unspecified), in which case the protocol parameter
must be specified. The protocol number to use is particular to the
"communication domain'' in which communication is to take place.

The following type specifications are supported:

Type Explanation
SOCK_STREAM Provides sequenced, reliable, two-way,

connection-based byte streams with an out-
of-band data transmission mechanism. Uses
TCP for the Internet address family.

SOCK_DGRAM Supports datagrams, which are
connectionless, unreliable buffers of a fixed
(typically small) maximum length. Uses UDP
for the Internet address family.

Sockets of type SOCK_STREAM are full-duplex byte streams. A
stream socket must be in a connected state before any data may be
sent or received on it. A connection to another socket is created with a
connect() call. Once connected, data may be transferred using send()
and recv() calls. When a session has been completed, a
closesocket() must be performed. Out-of-band data may also be
transmitted as described in send() and received as described in
recv().

The communications protocols used to implement a SOCK_STREAM
ensure that data is not lost or duplicated. If data for which the peer
protocol has buffer space cannot be successfully transmitted within a
reasonable length of time, the connection is considered broken and
subsequent calls will fail with the error code set to ETIMEDOUT.

SOCK_DGRAM sockets allow sending and receiving of datagrams to
and from arbitrary peers using sendto() and recvfrom(). If such a
socket is connect()ed to a specific peer, datagrams may be send to
that peer send() and may be received from (only) this peer using
recv().

See Also
accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(),
listen(), recv(), recvfrom(), select(), send(), sendto(), shutdown(),
ioctlsocket().

Chapter 5 Programming and Function Library

5-252 ADAM-5510 Series User’s Manual

gethostbyaddr

Syntax:
struct hostent * gethostbyaddr (const char * pcAddr, int len, int type);

Description:
Gets host information corresponding to an address.

Parameters Description
pcAddr A pointer to an address in network byte order.
len The length of the address, which must be 4 for

PF_INET addresses.
type The type of the address, which must be PF_INET.

Return Value
If no error occurs, gethostbyaddr() returns a pointer to the hostent
structure described above. Otherwise it returns a NULL pointer and a
specific error number is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
WSAHOST_NOT_FOUND Authoritative Answer Host not found.
WSATRY_AGAIN Non-Authoritative Host not found, or

SERVERFAIL.
WSANO_RECOVERY Non-recoverable errors, FORMERR,

REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of

requested type.

Remarks
gethostbyaddr() returns a pointer to the following structure which
contains the name(s) and address which correspond to the given
address.

struct hostent {
char * h_name;
char ** h_aliases;
short h_addrtype;
short h_length;
char ** h_addr_list;

};

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-253

The members of this structure are:

Element Usage
h_name Official name of the host (PC).
h_aliases A NULL-terminated array of alternate names.
h_addrtype The type of address being returned; for SOCKETS

this is always PF_INET.
h_length The length, in bytes, of each address; for PF_INET,

this is always 4.
h_addr_list A NULL-terminated list of addresses for the host.

Addresses are returned in network byte order.

The macro h_addr is defined to be h_addr_list[0] for compatibility with
older software. The pointer which is returned points to a structure
which is allocated by SOCKETS. The application must never attempt
to modify this structure or to free any of its components. The
application should copy any information which it needs before issuing
any other SOCKETS API calls.

See Also
gethostbyname(),

Chapter 5 Programming and Function Library

5-254 ADAM-5510 Series User’s Manual

gethostbyname

Syntax:
struct hostent * gethostbyname (const char * pszName);

Description:
Gets host information corresponding to a hostname.

Parameters Description
PszName A pointer to the name of the host.

Return Value
If no error occurs, gethostbyname() returns a pointer to the hostent
structure described above. Otherwise it returns a NULL pointer and a
specific error number is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
WSAHOST_NOT_FOUND Authoritative Answer Host not found.
WSATRY_AGAIN Non-Authoritative Host not found, or

SERVERFAIL.
WSANO_RECOVERY Non recoverable errors, FORMERR,

REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of

requested type.

Remarks
gethostbyname() returns a pointer to a hostent structure as
described under gethostbyaddr(). The contents of this structure
correspond to the hostname pszName.

The pointer which is returned points to a structure which is allocated
by SOCKETS. The application must never attempt to modify this
structure or to free any of its components. The application should copy
any information which it needs before issuing any other SOCKETS
API calls.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-255

A gethostbyname() implementation must not resolve IP address
strings passed to it. Such a request should be treated exactly as if an
unknown host name were passed. An application with an IP address
string to resolve should use inet_addr() to convert the string to an IP
address, then gethostbyaddr() to obtain the hostent structure.

See Also
gethostbyaddr()

Chapter 5 Programming and Function Library

5-256 ADAM-5510 Series User’s Manual

gethostname

Syntax:
int gethostname (char * pszName, int iAddressLen);

Description:
Return the standard host name for the local machine.

Parameters Description
pszName A pointer to a buffer that will receive the host

name.
iAddressLen The length of the buffer.

Return Value
If no error occurs, gethostname() returns 0, otherwise it returns
SOCKET_ERROR and a specific error code is returned in errno.

Error Codes
EFAULT The iAddressLen parameter is too small
ENETDOWN SOCKETS has detected that the network subsystem

has failed.

Remarks
This routine returns the name of the local host into the buffer specified
by the pszName parameter. The host name is returned as a null-
terminated string. The form of the host name is dependent on the
SOCKETS configuration file. However, it is guaranteed that the name
returned will be successfully parsed by gethostbyname().

See Also
gethostbyname().

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-257

getprotobyname

Syntax:
struct protoent * getprotobyname (const char * pszName);

Description:
Gets protocol information corresponding to a protocol name.

Parameters Description
pszName A pointer to a protocol name.

Return Value
If no error occurs, getprotobyname() returns a pointer to the protoent
structure described above. Otherwise it returns a NULL pointer and a
specific error number is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
WSANO_RECOVERY Non recoverable errors, FORMERR,

REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of

requested type.

Remarks
getprotobyname() returns a pointer to the following structure which
contains the name(s) and protocol number which correspond to the
given protocol pszName.

struct protoent {
char * p_name;
char ** p_aliases;
short p_proto;
};

The members of this structure are:

Element Usage
p_name Official name of the protocol.
p_aliases A NULL-terminated array of alternate names.
p_proto The protocol number, in host byte order.

Chapter 5 Programming and Function Library

5-258 ADAM-5510 Series User’s Manual

The pointer which is returned points to a structure which is allocated
by the SOCKETS library. The application must never attempt to
modify this structure or to free any of its components. The application
should copy any information which it needs before issuing any other
SOCKETS API calls.

See Also
getprotobynumber()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-259

getprotobynumber

Syntax:
struct protoent * getprotobynumber (int number);

Description:
Gets protocol information corresponding to a protocol number.

Parameters Description
number A protocol number, in host byte order.

Return Value
If no error occurs, getprotobynumber() returns a pointer to the
protoent structure described above. Otherwise it returns a NULL
pointer and a specific error number is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
WSANO_RECOVERY Non recoverable errors, FORMERR,

REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of

requested type.

Remarks
This function returns a pointer to a protoent struct ure as described
above in getprotobyname(). The contents of the structure correspond
to the given protocol number.

The pointer which is returned points to a structure which is allocated
by SOCKETS. The application must never attempt to modify this
struct ure or to free any of its components. The application should
copy any information which it needs before issuing any other
SOCKETS API calls.

See Also
getprotobyname()

Chapter 5 Programming and Function Library

5-260 ADAM-5510 Series User’s Manual

getservbyname

Syntax:
Gets service information corresponding to a service name and
protocol.

Description:
struct servent * getservbyname (const char * pszName,
const char * proto);

Parameters Description
pszName A pointer to a service name.
proto An optional pointer to a protocol name. If this is

NULL, getservbyname() returns the first service
entry for which the pszName matches the s_name or
one of the s_aliases. Otherwise getservbyname()
matches both the pszName and the proto.

Return Value
If no error occurs, getservbyname() returns a pointer to the servent
structure described above. Otherwise it returns a NULL pointer and a
specific error number is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
WSANO_RECOVERY Non recoverable errors, FORMERR,

REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of

requested type.

Remarks
getservbyname() returns a pointer to the following structure which
contains the name(s) and service number which correspond to the
given service pszName.

struct servent {
char * s_name;
char ** s_aliases;
short s_port;
char * s_proto;

};

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-261

The members of this structure are:

Element Usage
s_name Official name of the service.
s_aliases A NULL-terminated array of alternate names.
s_port The port number at which the service may be

contacted. Port numbers are returned in network byte
order.

s_proto The name of the protocol to use when contacting the
service.

The pointer which is returned points to a structure which is allocated
by the SOCKETS library. The application must never attempt to
modify this structure or to free any of its components. The application
should copy any information which it needs before issuing
any other SOCKETS API calls.

See Also
getservbyport()

Chapter 5 Programming and Function Library

5-262 ADAM-5510 Series User’s Manual

getservbyport

Syntax
struct servent * getservbyport (int port, const char * proto);

Description:
Gets service information corresponding to a port and protocol.

Parameters
port The port for a service, in network byte order.
proto An optional pointer to a protocol name. If this is

NULL, getservbyport() returnsthe first service entry
for which the port matches the s_port. Otherwise
getservbyport() matches both the port and the proto.

Return Value
If no error occurs, getservbyport() returns a pointer to the servent
structure described above. Otherwise it returns a NULL pointer and a
specific error number is returned in errno.

Error Codes
ENETDOWN SOCKETS has detected that the

network subsystem has failed.
WSANO_RECOVERY Non recoverable errors, FORMERR,

REFUSED, NOTIMP.
WSANO_DATA Valid name, no data record of

requested type.

Remarks
getservbyport() returns a pointer a servent structure as described
above for getservbyname().

The pointer which is returned points to a structure which is allocated
by SOCKETS. The application must never attempt to modify this
structure or to free any of its components. The application should copy
any information which it needs before issuing any other SOCKETS
API calls.

See Also
getservbyname()

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-263

5.4.9 HTTP Functions (CGI_LIB*.LIB)

CGI Application API (Server API)

Introduction

The SOCKETS web servers, HTTPD.EXE and HTTPFTPD.EXE,
provide both a Spawning Common Gateway Interface (CGI) and an
Extention API with the ability to extend the server to create dynamic
web pages, perform specialized tasks, etc. One of the extentions
provided is a Server Side Includes (SSI) interface using the CGI
interface, enabling a user to create web pages using HTML templates
with variable names, which is substituted in-time with specific values
The HTTPD Extension CGI works as follows: The extension has to
implement one function called the callback function. The server has a
number of functions that the extension may use, e.g. HttpSendData.
They are designed to give the extension sufficient control over any
http request.

Spawning CGI

An external program, indicated by the requested URL, is spawned. All
relevant information is passed as environment variables. The program
gets all input (e.g. posted data) from standard in and sends all
response through standard out.

This type of CGI is discouraged in favor of the Extension API.
The following CGI environment variables are supported:

CONTENT_TYPE
CONTENT_LENGTH
PATH, COMSPEC
REQUEST_METHOD

Enough free memory must be available when spawning a CGI
program, or no swapping or overlaying will be attempted. Since
COMMAND.COM uses all free memory, it follows that no CGI
program will be spawned if COMMAND.COM is the current
foreground program.

CGI programs must be small and must execute reasonably quickly.
While a CGI program is executing, the HTTP server is effectively

Chapter 5 Programming and Function Library

5-264 ADAM-5510 Series User’s Manual

blocked and cannot service any other requests. No console input or
output should be used. A CGI program is invoked by a URL containing
a path of /cgi-bin/<cgi-program> where <cgi-program> is the name of
an executable program which must be in the HTTP root directory or in
the path. Note that the "/cgi-bin/" part is stripped off and does not
represent a real directory. <Cgi-program> may be followed by a "?"
and a command line. On entry to the CGI program, the environment
variables listed above are set up and can be accessed.

If a command line is given, it can also be accessed in the normal way.
The CGI program generates a dynamic page by writing to STDOUT.
When the CGI program terminates, this output is sent to the remote
client (browser). The output can consist of a header and a body part
separated by an empty line. If the header contains a “Content-type:”
line, the content type will be set to that type and only the body will be
sent to the client. Otherwise all the output will be sent to the client
using content type “text/plain”. COMMAND.COM can be invoked as a
CGI program to perform simple DOS functions e.g. directory listings.
The following example performs a directory listing:

http://www.embedded-server.com/cgi-bin/command?/cdir

The next one performs a wide directory listing using a wild-card
specification:

http://www.embedded-server.com/cgi-bin/command?/cdir%20*.htm%20/w

Note the use of %20 to specify a space character.
Refer to the INDEX.HTM web page for an example of various ways of
calling CGI programs. The NUM.EXE program with source code
NUM.C, demonstrates the use of a header and body part building a
simple “page visited” web page: printf("Content-type: text/html\n\n”
”<html>\n<h1>\nThis page has been visited %d times\n</h1>\n",
number); printf("<P><P>Back.</html>\n");

Forms programming can be performed using either the GET or POST
methods. When GET is used, form data is copied to the command line
and is limited to 128 characters including the URL part. When the
POST method is used, the command line is also built. In addition,
form data are available from STDIN and is limited by disk space only.
See the forms programming example consisting of FORM.HTM,

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-265

FORM.EXE and FORM.C for examples of using both the GET and
POST methods.

So that you may fully understand CGI programming, this detailed
explanation of the server operation is provided.

Whenever HTTPD receives a URL containing “/cgi-bin/”, it interprets
the rest of the URL as a DOS program to spawn and run to
completion. The full path parsed from the URL is used, implying that
the program should be in physical directory called “/cgi-bin/” or a
subdirectory thereof. E.g. “program.exe” should be in
“%HTTP_DIR%\cgi-bin\” if the request is “GET /cgibin/program.exe”.

While this “CGI program” is executing, the server can accept new
server connections, but will not respond to them before the CGI
program terminates. The CGI program can be any DOS program that
is small enough to fit into available memory. Since HTTPD is blocked
while the CGI program executes, user interaction should not be used
and the CGI program should complete in a reasonable time.
Operation on receiving a CGI URL:

If the CGI program name is followed by a "?", the rest of the line is
sent as a command line to the CGI program after converting all %n
combinations.

If a “Content-Type” header is encountered, the CONTENT_TYPE
environment variable is set to the given value and if a “Content-
Length” header is encountered, the CONTENT_LENGTH environment
variable is set to the given value. The PATH and COMSPEC
environment variables are copied to the new environment and the
REQUEST_METHOD environment variable is set to either GET or
POST.

If the POST method is used, the rest of the HTTP message is copied
to a temporary file that is then re-directed to stdin. The stdout stream
is redirected to another temporary file. After completion of the request,
the temporary files are deleted. They will be created in the
%HTTPTMP% directory.

The CGI program is now invoked. This program can check the
environment variables, access the command line and in the case of a
POST, read from stdin.

Chapter 5 Programming and Function Library

5-266 ADAM-5510 Series User’s Manual

All output that should be passed back to the HTTP client (Browser) is
written to stdout. A single header line followed by an empty line,
containing “Contenttype:

content_type” may be pre -pended to the data. This line will be used
to set the content-type of the data being sent back. If such a header is
not found, the content type will be set to “text/plain”.

Overview of the Extention API

The SOCKETS HTTP servers (HTTPD/HTTPFTPD) provide a facility
to call functions in other modules which may be TSR or transient
programs. These functions are referred to as “HTTPD extensions”.
HTTPD or HTTPFTPD must be loaded as a TSR using the /r switch. It
provides an API via software Interrupt 63Hex. The API can be located
by searching for a signature containing SockHTTPD starting 10 bytes
before the interrupt entry point and terminated by a 0 byte.

A CGI adapter is provided that simplifies the communication with the
server. It is located in a file called CGIADAP.C. The adapter finds the
signature and provides a C interface. It also intercepts the callback
function and performs a stack and context switch, which makes
implementing an extension much easier.

An HTTPD extension registers interest in a specific URL by calling the
HttpRegister() API specifying a “path”. Note that this path has nothing
to do with an actual file path on the server and will override any real
path that may be used for serving static pages. The HttpRegister()
function also specifies a Callback function to be called when the
actual request is received by HTTPD, a DWORD User ID to be used
in callbacks and whether requests should be allowed to overlap, i.e. a
new request can be received while still servicing a previous request or
requests.

The Callback function will be called when a request for the registered
path is received and as many times afterwards as is necessary to
complete the request. It is called with a parameter structure specifying
the reason for the request, the User ID, an HTTPD handle and values
specific to the reason for the callback, e.g. a pointer to the command
line on the initial callback. Other reasons for calling the Callback
function are to notify of new received data, connection closure by the
peer, readiness to accept more data and connection errors.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-267

The callback must return a value to indicate that it is still busy
handling the request, has completed the request or wants to abort the
request with an error. The HTTPD handle will be constant and unique
from the first callback to the completion of the request.

While in the Callback function, data can be read from the peer or sent
to the peer and a file can be submitted to be sent to the peer.

Note: Extensions are responsible for sending all HTTP header fields
to clients.

The following extensions have been developed for functional and
demonstrational purposes.

SSI Interface

If you want to display the current date and time, or a certain CGI
environment variable in your otherwise static document, you can go
through the trouble of writing a CGI program that outputs this small
amount of virtual data. Or better yet, you can use a powerful feature
called Server Side Includes (or SSI).

Server Side Includes are directives which you can place into your
HTML documents to output such data as environment variables and
file statistics.

For a detailed introduction, please visit
http://www.ora.com/info/cgi/ch05.html

A simple yet powerful interface is provided to perform Server Side
Includes (SSI) tasks. A user only has to implement one predefined
function and make use of only four API functions to unlock the power
of SSI.

The working of the interface is described at the top of the header file
ssi.h.

To use, include ssicgi.c in your project and include ssi.h in your
source files. Take a look at ssi.c for a simple example.

Chapter 5 Programming and Function Library

5-268 ADAM-5510 Series User’s Manual

Extention API Examples

Five very simple examples are included to demonstrate the usage of
the Extention API. Source code is included, as well as make files.
Put all .htm and .exe files in the %HTTP_DIR% directory and start
HTTPD. Load all the cgi programs (you may use cgi.bat). All is in
place now and the examples may be accessed through index.htm.

The first four examples may operate in one of two modes:

As a TSR (resident) program: this is the default behavior. At this stage
unloading of the TSR is not supported. De-registration is possible by
loading the program again. This routine may be repeated.

As a transient program: use ‘/t’ command line switch to activate. This
option will immediately spawn ‘command.com’. From this pro mpt
other cgi programs may be loaded. The program exits when
‘command.com’ is exited by typing ‘exit’ at the prompt.

These programs are:
1. cgiecho A very simple program that accepts data from a user and
echoes it back nicely formatted. Get echoform.htm from the browser.
2. cgicount A page visit counter. Only updates between sessions if
transient (cgicount /t). Get num.htm from the browser.
3. cgiform Does the same as the old ‘fill out the form and submit’
utility. Get caform.htm from the browser.

SSI A very simple SSI implementation that demonstrates the SSI
interfaces. Template.htm is filled by some variables. Get ssi.htm from
the browser.

The fifth example, FFUR, (Form-base File Upload Receiver) is only a
transient program, but can easily be adapted to be similar to the rest.
It handles the upload of a file as a POST command by filling out
ffur.htm.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-269

HTTPD Function Reference

CGIADAP.C is an interface program a user may utilize to implement
external extention CGI programs. This interface performs stack and
context switches, and provides ordinary C functions to access the http
server (HTTPD.exe).

The header file to use is CGIADAP.H.

The API may be used without using CGIADAP by making low level
calls which are detailed below. In this case the user must perform the
required stack and context switches if required.

Chapter 5 Programming and Function Library

5-270 ADAM-5510 Series User’s Manual

HttpRegister

Syntax:
int HttpRegister(far char *pfszPath,

int (far *pfCallback) (HTTP_PARAMS far *pfsHttpParams),
int iFlags, DWORD dwUserID);

Description:
The HttpRegister() function registers an interest in a URL, providing a
callback function. The callback is guaranteed to only be called when
DOS can be called. The DOS critical handler will be disabled and all
critical errors will result in an access error without any user
intervention. Since the callback happens at interrupt time, it should
execute for as short a time as possible. After a done or error return,
no further callbacks will be generated for the current request.

Only one callback will be active at any time. Calling an API function
while executing the callback function will not result in another callback
before the current callback has returned.

Parameter Description
pfszPath far pointer to the string identifying a URL. It should be an

exact match of the abs_path part of the URI minus the
leading '/'. For instance, If you want to capture all
http://myserver.com/cgi-bin/getpage.exe, you should
register 'cgibin/getpage.exe'.

pfCallback Address of callback function.
Return values when returning from callback:
RET_OK not done, give me more upcalls
RET_DONE done, no more upcalls please
RET_ERR done, error

PfsHttpParams Far pointer to HTTP parameter block.

 pfsHttpParams->iReason

Reason for callback:
R_NEWREQ - New HTTP request. pszCommandLine

points to the command line passed in the
URL. The number contained in iValue
specifies the HTTP operation; RQ_GET
for GET and RQ_POST for POST.

R_INDATA - Input data available, iValue contains
count.

R_OUTDATA - Can send output data, iValue contains
count.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-271

R_ENDDATA - Peer closed connection i.e. "end of input

data"
R_CLOSED - Connection closed.

pfsHttpParams->iHandle
HTTPD handle, used in subsequent API calls for this
request. The user should not modify it.

See HTAPIC.H for the other definitions

iflags F_OVERLAP - Overlapped request (1),
non-overlapped request (0).
All other bits are reserved.

dwUserID Value passed to HttpRegister(); this value is for use by the
extension, HTTPD does not modify it.

Return value
0: OK
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_REGISTER (0)
DS:SI pfszPath
ES:DI pfCallback
BX iFlags
CX:DX dwUserID

Low level return parameters
Return code in AX.

Note that the stack and the data segment on entry will be that of
HTTPD. Depending on the memory model used for the extension and
the amount of stack space required, it may be required to switch
stacks during the callback.

Chapter 5 Programming and Function Library

5-272 ADAM-5510 Series User’s Manual

HttpDeRegister

Syntax:
int HttpDeRegister(char far *pfszPath);

Description:
The HttpDeRegister() function removes the interest in a URL. After
this call no more callbacks will be generated for this URL. Any
requests in progress will be terminated with an error to the peer. This
function must be called for all registrations made by a program before
terminating that program; otherwise the system will inevitably crash on
any subsequent request.

Parameter Description
pfszPath Far pointer to URL to de-register.

Return value
0: OK
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_DEREGISTER (1)
DS:SI pfszPath

Low level return parameters
Return code in AX.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-273

HttpGetData

Syntax
int HttpGetData(int iHandle, char far *pfcBuf, int iCount);

Description:
The HttpGetData() function can be called when a POST operation
has been indicated by the callback to get data sent to the server by
the client. If more data is expected and the extension is busy
executing the callback function, a 0 return should be made from the
callback indicating it is still busy and getting more data should be
attempted at the next callback.

return:

>= 0 - ok, bytes received
< 0: One of the error messages (see htapic.h)

Parameter Description
iHandle Handle passed in pfsHttpParams.
pfcBuf Far pointer to buffer to receive data.
iCount Length of buffer.

Return value
>=0: OK, number of bytes received.
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_GETDATA (2)
BX iHandle
DS:SI pfcBuf
CX iCount

Low level return parameters
Return code in AX.

Chapter 5 Programming and Function Library

5-274 ADAM-5510 Series User’s Manual

HttpSendData

Syntax
int HttpSendData(int iHandle, char far *pfcBuf, int iCount);

Description:
The HttpSendData() function is used to send data to the client.

If the return indicates that less than the requested number of bytes
has been sent and the extension is busy executing the callback
function, a 0 return should be made from the callback indicating it is
still busy. Then an attempt to send more data should be made at the
next callback.

All the required data should be sent to the client before an
HttpSubmitFile() function is used. After HttpSubmitFile(),
HttpSendData() should not be called again.

Parameter Description
iHandle Handle passed in pfsHttpParams.
pfcBuf Far pointer to buffer with data to send.
iCount Length of buffer.

Return value
>= 0: number of bytes actually sent
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_SENDDATA (3)
BX iHandle
DS:SI pcBuf
CX iCount

Low level return parameters
Return code in AX.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-275

HttpSubmitFile

Syntax:
int HttpSubmitFile(int iHandle, char far *pfszFileName);

Description:
The HttpSubmitFile() function is used to submit a file to be sent to
the client in response to a request. The file will be logically appended
to any data already sent using HttpSendData(). The file should not be
exclusively opened when it is submitted. After it is transmitted,
transmit upcalls will be issued normally. This gives the user the ability
to send any number of files on the connection with arbitrary data in
between.

Parameter Description
iHandle Handle passed in pfsHttpParams.
pfszFileName Far pointer to name of file to submit.

Return value
0: OK
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_SENDFILE (4)
BX iHandle
DS:SI pfszFileName

Chapter 5 Programming and Function Library

5-276 ADAM-5510 Series User’s Manual

HttpGetStatus

Syntax
int HttpGetStatus(void);

Description:
The HttpGetStatus() function gets the number of connections to the
server. It must also be used as a polling function when the server is
running in passive mode to dequeue and handle pending requests.

Parameter Description
None

Return value
>=0: Number of connections to server.
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_GETSTATUS(6)

Low level return parameters
Return code in AX.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-277

HttpGetVersion

Syntax
int HttpDeRegister(void);

Description:
The HttpGetVersion() function gets the version of the running HTTP
server.

Parameter Description
None

Return value
>=0: Version number.
< 0: One of the error messages (SEE HTAPIC.H)

Low level calling parameters
AH APIF_GETVERSION (5)

Low level return parameters
Return code in AX.

Chapter 5 Programming and Function Library

5-278 ADAM-5510 Series User’s Manual

GetStackPointer/GetStackSegment

Syntax
int SetStackPointer (void);
int SetStackSegment (void);

Description:
The GetStackPointer()/GetStackSegment() functions get the current
Stack Pointer/Segment.

Parameter Description
None

Return value
Current value of Stack Pointer/Segment.

 Chapter 5 Programming and Function Library

ADAM-5510 Series User’s Manual 5-279

SetStackPointer/SetStackSegment

Syntax:
void SetStackPointer (int iPointer);
void SetStackSegment (int iSegment);

Description:
The SetStackPointer()/SetStackSegment() functions set the Stack
Pointer/Segment.

The stack pointer for callbacks is by default set to _SP - 1000, the first
time the HTTP API is called. If you would need space on the stack, or
for some reason want to make it tighter, set the stack pointer for
callbacks manually. Be careful not to overwrite used memory.

Parameter Description
iPointer Value to set Stack Pointer to.

Return value
None

Constants and Definitions used by CGI API
Refer to HTAPIC.H.

SSI Definitions and functions
Refer to SSI.H.

6
Sockets Utility

Chapter 6 Sockets Utility

6-2 ADAM-5510 Series User’s Manual

SOCKETS utilities make use of command-line parameters and/or
configuration files. Please be careful to note the name and location of
the configuration file used by the application you are working with. All
SOCKETS applications require that the kernel be loaded before the
application is run in order to function properly.

DHCPSTAT

DHCPSTAT displays the DHCP information for the machine.

Syntax
DHCPSTAT [r | v]

Options
The r option is for forcing a renewal of the DHCP lease.
The v option displays the SOCKETS version information.

Example

DHCPSTAT

This will display all the DHCP information, such as IP address and
lease time.

Chapter 6 Sockets Utility

ADAM-5510 Series User’s Manual 6-3

FTP

FTP is a file transmitting and retrieving client that runs in interactive or
batch mode.

Syntax

FTP server [options]

Options

/n
/v
/p=Port
/f=ScriptFile [ScriptParameters]

Remarks

Server
The name or ip address of a server to connect to.

/n

Suppress progress indicator.
/v

Verbose output for troubleshooting.
/p=Port

Connect to a server port other than the standard FTP port number of
21.

/f=ScriptFile
A file containing commands for the client to send to the server upon
connection. Simple parameter substitution is performed, with the
first element of ScriptParameters accessible as “%1,” etc.

ScriptParameters
Parameters to pass into the ScriptFile.

Return Codes

0 Success
1 Parameter error
2 SOCKETS not loaded
3 User aborted
4 Transfer aborted
5 Error writing local file
6 Error reading local file

Other Server returned error response code; to find that error code, add
390 to the response code returned by FTP. The result will always be
greater than or equal to 400 in this case.

Chapter 6 Sockets Utility

6-4 ADAM-5510 Series User’s Manual

Example

FTP /n FTP.cdrom.com /f=getfile.scr /.2/simtelnet/msdos DIRS.TXT
(The file GETFILE.SCR):
user anonymous
pass root@
cd %1
binary
get %2
quit

FTP Commands
The commands entered at the FTP client can be interpreted and
translated to standard FTP commands to be sent to the server. The
FTP server might recognise more, or less, commands than the
standard list of commands as specified in RFC 959. The site
command is always server dependent. Some of the standard
commands are implemented differently in various servers. Useful
things to note are:

1. The put and get commands allow multiple file transfers by usage of

wild card characters. When getting files with paths or long names,
no translation of foreign file names are done. Specify a valid DOS
local_file name.

2. A short directory list (NLST) is obtained by ls and the long list with
dir.

3. Some of the commands can be abbreviated.
4. Some commands are aliases added for user comfort like bye, exit

and quit; get and mget; and put and mput.
5. The optional [local_file] parameter will, when specified, cause the

output of that command to be logged to a file. By specifying the file
as PRN you can get immediate printouts.

6. On some servers you might specify the optional [remote_file]
parameter as PRN or the printer output device to do remote
printing. (See also the site nopath command for the SOCKETS
FTP server.)

7. The F3 key and spacebar can be used to recall the last command
word by word. Below is a list of commands recognised by the
SOCKETS FTP client (some FTP servers might not offer all the
facilities):

Chapter 6 Sockets Utility

ADAM-5510 Series User’s Manual 6-5

Command Description
abort Cancel an incomplete transfer
append "Put" a file at the server but append it if the file

exists
ascii Synonym for type a
binary Synonym for type i
bye Synonym for quit
cd directory Synonym for cwd
cwd directory Change server directory
dele file Delete a server file
dir [file l directory [local_file]] Synonym for list
exit Synonym for quit
get remote_file(s) [local_file] Transfer a file from the server in the current

mode (type)
image Synonym for type i
ls [file l directory [local_file]] Synonym for nlst
lcd directory Perform a local change directory
ldir [file l directory] Give a local directory listing
list [file l directory [local_file]] Give a long directory listing
mget remote_file(s) [local_file] Synonym for get
mkdir remote_directory Create a server directory
mput local_file(s) [remote_file] Synonym for put
nlst [file l directory [local_file]] Give a short names-only directory listing
pass [password] Password for username
pasv [on | off] Report or change the status of the passive

transfer mode to enable firewall friendly file
transfers. (The SOCKETS FTP client always
tries to switch passive mode on at the start of a
session.)

put local_file(s) [remote_file] Transfer a file to the server in the current mode
(type)

Pwd Print working directory at server
quit Terminate FTP session
quote remote_command [args ...] Send a command to the server without

any interpretation
rmdir remote_directory Remove (delete) a server directory
rnfr existing_filename Rename a file, command 1 of 2
rnto new_filename Rename a file, command 2 of 2
site sub-command Send server specific commands
size file Report the file size in bytes as a 213 message
shell Shell to DOS for IFTP.EXE
stat Report the status of a transfer or active

connections
System Return operating system information from the

server
type [i I a] Report or select the file transfer mode: image

(binary) or ASCII
user [username] Username to logon
verbose [on | off] Verbose mode reports more of the FTP

negotiations

Chapter 6 Sockets Utility

6-6 ADAM-5510 Series User’s Manual

HTTPGET

HTTPGET is a simple web client that can retrieve the contents of a
URL to a local file.

Syntax
HTTPGET [-p] [–s] [–v]URL

Options
-p=Port
-s=Server
-v
localfile

Remarks
Port
Use to specify a remote port other than 80 to connect to.

Server
Use to specify a server name if the URL doesn’t contain one.

-v
Display extra output for troubleshooting.

localfile
Rather than keeping the filename from the URL, the contents may be
saved to a named file.

Example
HTTPGET http://www.datalight.com/images/logohead.gif
HTTPGET –v http://www.datalight.com/images/logohead.gif logo.gif

Chapter 6 Sockets Utility

ADAM-5510 Series User’s Manual 6-7

IFSTAT

IFSTAT displays the status of the Interface and the version
information for SOCKETS.

Syntax

IFSTAT [i] [v]

Options

The i option shows the Interface status.
The v option shows the version information.

Example

IFSTAT v
This will display the SOCKETS version information

Chapter 6 Sockets Utility

6-8 ADAM-5510 Series User’s Manual

IPSTAT

The IPSTAT utility returns statistics on IP and memory. Use IPSTAT
to check for error conditions and memory problems.

Syntax
IPSTAT

Example
IPSTAT

The follwing will be displayed (The values may differ):
IP stats at 160F:04C8:
Total Packets 2671
Smaller than minimum size 0
IP header length too small 0
Wrong IP version 0
Unsupported protocol 0
Memory available 9016
Memory allocation failures 0
Memory free errors 0
Minimum stack observed 886

Chapter 6 Sockets Utility

ADAM-5510 Series User’s Manual 6-9

MAKEMAIL

MAKEMAIL packages the body text and any attachments for delivery
using the SENDMAIL application.

Syntax
MAKEMAIL –tToAddress –fFromAddress –sSubject –bBodyTextFile -
oOutputFileaAttachment

Options
ToAddress
The e-mail address of the recipient(s) of this mail. Additional recipients
are specified by repeated use of the –t parameter. If the ToAddress is
a name that can be resolved by either the DNS server or host file then
the @servername is not necessary.

FromAddress
Used to identify the sender of the message.

Subject
The subject line of the e-mail message.

BodyTextFile
The local file containing the body text of the e-mail message to deliver.

OutputFile
The local file name in which to store the prepared file for delivery by
SENDMAIL.This file is overwritten if it already exists!

Attachment
The name of a local file to be binary attached to this e-mail message.
Multiple attachments are created by repeated use of the –a parameter.
Files are attached as MIME parts, encoded with the application/x-
uuencode content type.

Example

MAKEMAIL -tfred@yahoo.com -fmary@yahoo.com –sStatus –
bmessage.txt –omail.dat

MAKEMAIL –tfred –tbarney –fwilma –sDinner –bmenu.txt –omail.dat

Chapter 6 Sockets Utility

6-10 ADAM-5510 Series User’s Manual

MAKEMAIL –tfred –fwilma –sBowling –bbody.txt –aStone.jpg –
aRock.jpg –omail.dat

Chapter 6 Sockets Utility

ADAM-5510 Series User’s Manual 6-11

SENDMAIL

SENDMAIL delivers e-mail messages packaged by the MAKEMAIL
application to an Internet mail server. SENDMAIL also creates a local
log file to indicate successful send or failures.

Syntax
SENDMAIL server file

Options
Server
The IP address or DNS name of the Internet mail server to receive the
message.

File
The file, created by the MAKEMAIL utility, to deliver.

Logging Format

Timestamp, Code String

Timestamp
Weekday Month Day Time Year

Code
Three digit integer. 000 means perfect success, 100-199 mean
usage error and 200-299 means TCP/IP error from server.

String
Human–readable explanation of the error code.

Example

SENDMAIL mail.datalight.com mail.dat

Chapter 6 Sockets Utility

6-12 ADAM-5510 Series User’s Manual

XPING

XPING starts a continuous string of pings until stopped by a keystroke.

Syntax
XPING ip address [interval]

Remarks
ip address This may be a numeric address or a name address.

Options
interval The time to wait between pings in clock ticks.

Example

XPING 10.0.0.1 20

This will ping the address of 10.0.0.1 every 20 clock ticks.

7
HTTP and FTP Server Application

Chapter 7 HTTP and FTP Server Application

7-2 ADAM-5510 Series User’s Manual

HTTP Server

Overview

The SOCKETS HTTP server, HTTPD.EXE, is a small,
fast, reliable and extendable web server that can run as
either an application or TSR. Apart from the minimum
required file download capability, the following additional
capabilities are provided:

1. Remote Console Server- ability to gain terminal-

type access to the server system, using a standard
browser, without the need to install any software on
the browser computer

2. Authentication – Both system wide and directory wise
3. CGI Extendibility – The ability to extend the server

to create dynamic web pages, perform specialized
tasks, etc.

4. A Server Side Includes (SSI) interface is provided
using the CGI interface, enabling a user to create
web pages using HTML templates with variable
names, which is substituted in - time with specific
values

5. Ability to run as a background process
6. Flexibility to control physical parameters such as
memory usage and number of connections

Server

The HTTP server is used to send static web pages
existing as files on the server or dynamically generated
web pages to a remote client (browser). Dynamic pages
can be generated in two ways:

1. Extension CGI. By calling an external CGI handler,

the server provides an API to external handlers. A
Server Side Includes (SSI) interface is provided as
well, which makes it very easy to create powerful
interactive web pages.

2. Spawning CGI. By spawning programs with a
relatively short execution time to generate the
pages through a mechanism similar to CGI, the
basic mechanism used by CGI is that arbitrary
programs can be spawned from the web server

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-3

with input as received from the remote browser
and output that can be sent to the browser.

The Remote Console Server accepts input from a remote
client that is fed to the keyboard buffer for use by an
arbitrary program using it. It also monitors the screen
display buffer area and sends screen information to the
remote client.

The SOCKETS password file controls authentication.
Authentication is user specific and may also differ from
directory to directory. It may also be put off for either
some or all users. See the section on authentication.

The HTTP server can support multiple simultaneous
sessions. The GET and POST request methods are
implemented as well as the following MIME types:

text/html, text/plain, image/gif, image/jpeg,

image/jpeg and application/octet-stream. The MIME

type is determined by the file extension.

Remote Console Server

Initialization

The client (browser) will initialize a remote session. An
HTTP connection will be made to the HTTP server. The
downloaded page will contain the applet that will
automatically connect to the RCS on TCP port 81. An
example download page is supplied as REMCON.HTM.

Almost any application e.g. a text editor can be run
on the server. The remote keyboard and display
control the application as if they were locally attached.

On the remote side, the Java Applet acts as a simple
terminal emulator that displays what it receives from
the server and sends what is entered from the
keyboard to the server.

Chapter 7 HTTP and FTP Server Application

7-4 ADAM-5510 Series User’s Manual

It is not required to have a real display adapter on the
embedded system server, only to have display buffer
memory.

When a new connection is made, all the screen data, as
well as the cursor position, is sent to the client.
Subsequently the RCS keeps a watch on the video
memory and cursor position and

whenever a change is detected, the RCS sends the
changed data to the Java applet.

Keyboard data received from the client is passed to the
keyboard buffer making it available as keyboard input
for use by any application executing on the server.

Remote Console Client

The remote console client exists as a Java 1.3.1 applet,
supplied as RC.JAR, and will function on any Java 1.3.1
compliant browser. Please note that a security certificate
has not been compiled into RC.JAR so it is not compliant
with versions of the Netscape browser that require a
security certificate to run Java applets. A DOS based
client using SOCKETS is also supplied as RCCLI.EXE.
For additional information about RC.JAR or RCCLI.EXE,
please see the Utility Description Chapter.

Extension CGI

The SOCKETS HTTP servers (HTTPD/HTTPFTPD)
provide a facility to call functions in other modules which
may be TSR or transient programs. These functions are
referred to as “HTTPD extensions.” For more information
please see the “ROM -DOS Developer’s Guide” section
“CGI Application API.

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-5

Extension CGI Examples

Five very simple examples are included to demonstrate the
implementation of CGI. Source code is included.

Put all .htm and .exe files in the %HTTP_DIR% d irectory
and start HTTPD. Load all the cgi programs (you may use
cgi.bat). All is in place now and the examples may be
accessed through index.htm.

The first four examples may operate in one of two modes:

As a TSR (resident) program: this is the default behavior.
At this stage unloading of the TSR is not supported. De -
registration is possible by loading the program again. This
routine may be repeated.

As a transient program: use ‘/t’ command line switch to
activate. This option will immediately spawn
‘command.com’. From this prompt other cgi programs may
be loaded. The program exits when ‘command.com’ is
exited by typing ‘exit’ at the prompt.

These programs are:

1. cgiecho A very simple program that accepts
data from a user and echoes it back nicely formatted. Get
echoform.htm from the browser.

2. cgicount A page visit counter. Only updates
between sessions if transient (cgicount /t) Get num.htm
from the browser.

3. cgiform Does the same as the old ‘fill out the form
and submit’ utility. Get caform.htm
from the browser.

4. SSI A very simple SSI implementation that
demonstrates the SSI interfaces. Template.htm is filled by
some variables. Get ssi.htm from the browser.

The fifth example, FFUR , (Form-base File Upload Receiver)
is only a transient program, but can easily be adapted to be
similar to the rest. It handles the upload of a file as a POST
command by filling out ffur.htm.

Chapter 7 HTTP and FTP Server Application

7-6 ADAM-5510 Series User’s Manual

Passive Mode
The server may be run in passive mode by specifying a ‘/p’
command line switch. When passive, the server will record
network events but only handle them once it is triggered by
a CGI user.

Server Memory

The server’s memory usage may be controlled in two ways:

1. By specifying the amount of memory when going TSR.

2. By specifying the maximum number of connections the
server will allow.

Option 1 is the recommended option. Use Option 2 if you
have ‘heavy’ web pages – usually the type where pages
consist of frames and many images, etc. Connections are
generally reset when more connections are attempted
than the defined maximum. The client then must retry to
establish the lost connections, leading to a more
distributed load on the server.

Spawning CGI

An external program, indicated by the requested URL, is
spawned. All relevant information is passed as
environment variables. The CGI program gets all input (e.g.
posted data) from standard in and sends all response
through standard out. Spawning CGI is discouraged in
favor of Extension CGI. For more information please see
the “ROM -DOS Developer’s Guide” section
“CGI Applicatio n API.

Authentication

Default authentication matches the capabilities of the FTP
server as documented in the section
“FTP Server” on page 217. A file called "SOCKET.UPW"
should exist in the SOCKETS
(environment variable) directory.

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-7

The default permission file controls remote console
access. Each listed user has a single -letter privilege
code set if he has privilege to use the Remote Console.
The code should be missing if that user does not have
Remote Console privilege.

An additional authentication feature is implemented -
htaccess. This feature provides a per- directory permission
override mechanism. It is enabled using '/t' as command
line switch. If htaccess is enabled, the default mechanism
may be skipped (but no default users or remote console
access will be available).

A file called HTACCESS (typically hidden) contains
authentication overrides to enable partial anonymous
access or additional password security to subdirectories,
etc. If this feature is activated, the server code will look for
HTACCESS files in each directory starting from the
requested path and continuing upward in the directory
structure (assuming the root directory to be at the top) until
an HTACCESS file is found. If no f ile is found, then the
default settings are used. An anonymous access entry is
available for the developer to specify that some
subdirectory is authorized for any user, although its parent
directory is password -protected. CGI scripts can also be
controlle d via the HTACCESS mechanism.

HTTPD Program

The syntax for HTTPD is:

HTTPD [options] [<http_port>] [<rc_port>]

Any combination of these switches may be used. They should be
separated by at least one space.

Option Description

/? /h display help screen
/r run server in TSR mode
/s display server status
/t enable htaccess directory level

authentication
/u unload if resident
/c close listen
/d do not start remote console

Chapter 7 HTTP and FTP Server Application

7-8 ADAM-5510 Series User’s Manual

/g allow old type (spawning) CGI
/p Passive mode
/i=<InterruptNumber> Interrupt number for cgi API
/m=<MemorySize> set memory size
/n=<MaximumConnections> number of simultaneous connections
/a=<ScreenX>, <ScreenY> set screen aspect

/v=<ScreenBufferSegment>[: set video buffer address (hex)
<ScreenBufferOffset>]
/k Unload and abort all active

connections
Remarks

ScreenX, ScreenY
The width and height of the screen
area to serve for the remote console
session. These values default to 80
and 25, respectively.

ScreenBufferSegment, S creenBufferOffset

Together, a pointer to the top -left corner of
the display memory to serve for the
remote console session. These values
default to B000 and 0000 respectively, for
monochrome display adapters and to
B800 and 0000 respectively, for color
display adapters.

MemorySize

The maximum amount of memory available
to the server. The default value is 32K. The
value of m can range from 8192 to 63472.

MaximumConnections

The maximum number of simultaneous connections
allowed by the server.

InterruptNumber

The interrupt number to access the CGI API.

http_port
HTTP port to listen on. This parameter
defaults to the standard HTTP port
number of 80.

rc_port

Remote Console port to listen on. This parameter defaults
to 81.

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-9

The “root” directory for web content is the current directory
when HTTPD is started. This can be changed by setting an
environment variable HTTP_DIR e.g.

SET HTTP_DIR=D:\SERVER\WEB

Format of "SOCKET.UPW"

This is the same file used for the FTP server’s
(FTPD.EXE) permissions. This file consists of lines
where each line contains a user's information. A line
starting with a # is considered a comment and is ignored.
Each line consists of four fields:

<Username> <Password> <Working Directory>
<Permissions> [# comment]

Username: The name of this user. If it is *, it

will be used when the client does
not specify a username.

Password: This user's password. If it is *, no

password is required

Working Directory: The user will only have access to this
directory and its subdirectories. If it is
‘/’, this user has access to the whole
system. HTTP_DIR can be referred to
as ‘\’. If a relative path is specified, it is
appended to HTTP_DIR.

Permissions: IMPORTANT when a user is granted

both FTP and HTTP permissions, the
FTP permissions must appear first,
otherwise they will be ignored.
Operations allowed. May contain any
combination of the following tokens: e -
User may 'g et' files
p - User may 'post' files
g - User may use cgi
m - User may use Re mote Console

Fields should be separated by single spaces. If any field is
missing the entry is ignored. A
comment may follow the last field (permissions) of the line.

Chapter 7 HTTP and FTP Server Application

7-10 ADAM-5510 Series User’s Manual

Note: If a default user is supplied, it should always appear
first in the list of users. Only users below the default user will
be considered.

Format of "htaccess"

Any directory may contain this file, and serve as
overrides to the general permissions for the containing
directory and all its subs until another htaccess is found.
This file consists of lines where each line contains a
user's information. A line starting with a # is considered
a comment and is ignored. Each line consists of three
fields:

<Username> <Password > <Permissions> [# comment]

username: The name of this user. If it is *, it will be

used when the client didn’t specify a
username.

Password This user's password. If it is *, no

password is required.

Permissions Operations allowed. may contain any
combination of following tokens:
e - User may 'g et' files
p - User may 'post' files
g - User may use cgi

Fields should be separated by single spaces.If any field is
missing the entry is ignored. A
comment may follow the last field (permissions) of the line.

Note: If a default user is supplied, it should always appear
first in the list of users. Only users

below the default user will be considered.

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-11

FTP Server

FTPD is a file server that can run either as an application or
as a TSR. The name of the server as displayed in the
banner is determined by the HOSTNAME environment
variable. If the environment variable is not set, the name
“Socket” is used. The user password file, SOCKET.UPW,
in the SOCKETS directory (indicated by the SOCKETS
environment variable) controls access.

A temporary file is created when a directory listing is
requested. This file is created in the current directory, but
can be created in any directory as specified in the FTPDIR
environment variable.

FTPD Program

The syntax for FTPD is:

FTPD [options] [<ftp_port>]

Option Description

/? /h display help screen
/r run server in TSR mode
/s display server status
/u unload if resident
/c close listen
/m=<MemorySize> set memory size
/n=<MaximumConnections> number of simultaneous connections
/k Abort all active connections and

unload

Remarks
MemorySize

The number of bytes of memory available to the server.
This value defaults to
32768.

MaximumConnections

The maximum number of simultaneous connections
allowed by the server.

ftp_port

FTPD will listen on the listed port. This
parameter defaults to the standard FTP port
number of 21.

Chapter 7 HTTP and FTP Server Application

7-12 ADAM-5510 Series User’s Manual

Configuration File

FTPD uses the standard SOCKET.UPW file for
validating logins. The file is composed of text
lines, each representing a login name, password,
and the configuration to use for a session
opened with those credentials. Space
characters separate the parameters in the file,
which are in the following format:

name password directory rights

The location of the username/password file
to be used by the server is specified by the
environment variable SOCKETS as follows:

%SOCKETS% \SOCKET.UPW

If the variable SOCKETS is not specified, the following file is
used:

\DL\SOCKETS\SOCKET.UPW

Configuration File Parameters
name

The login name of this record.

password
The password to authenticate a user trying to login as this
name.

directory

The starting directory for this user.

rights
Up to four characters specifying which permissions this
user is granted:

r means that this user has read access.

w means that this user has write access.

c means that this user has permission to make new
directories.
d means that this user has permission to
change to a directory other than his
starting location and subdirectories from
the starting location.

Example Socket.upw

Admin admin c:\ drwc
Guest * c:\guest dr

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-13

Example Command Line
FTPD /m=40000 /r

FTP Server Commands

The following commands are recognised by the SOCKETS
FTP server:

Command Description

Abort cancel an incomplete transfer
append "put" a file at the server but append it if

the file exists
cwd directory change server directory
dele file delete a server file
list [file l directory] give a long directory listing
mkd remote_directory create a server directory
nlst [file l directory] gives a short names -only directory listing
pass [password] password for username
pasv [on | off] report or change the status of the

passive transfer mode to enable
firewall friendly file transfers. (The
SOCKETS FTP client always tries
to switch passive mode on at the
start of a session.)

retr remote_file transfer a file from the server in the current
mode

stor local_file transfer a file to the server in the current
mode

pwd print working directory
quit terminate FTP session
rmd remote_directory remove (delete) directory
rnfr existing_filename rename a file, command 1 of 2
rnto new_filename rename a file, command 2 of 2
site [path I nopath] use full path description (see
site raw [interface] open a session to a raw host using one of

the raw lines (interfaces) specified
site sub-command command to be passed on to raw host
size file report the file size in bytes as a message

prefixed with 213
stat report the status of a transfer or active

connections
system return operating system information from

the server
type [i I a] report or select the file transfer mode

image (binary) or ASCII
user [username] username to logon

Chapter 7 HTTP and FTP Server Application

7-14 ADAM-5510 Series User’s Manual

Combined HTTP and FTP Server

HTTPFTPD is a combined HTTP and FTP server that can run
either as an application or as a TSR. By default, it processes
normal HTTP requests on port 80 and normal FTP requests
on port 21. It also serves a proprietary session displaying the
contents of text -mode display memory to the RC.JAR and
RCCLI client applications. This feature is commonly called
the “remote console.” If the HTTPFTPD server is loaded as a
DOS TSR program, set the environment variable, HTTP_DIR,
to the location of the INDEX.HTML file; for example, SET
HTTP_DIR=C:\DL\ SOCKETS\SERVER

HTTPFTPD Program

The syntax for FTTPD is:

HTTPFTPD [options] [<http_port> [<ftp_port> [<rc_port>]]]

Any combination of these switches may be used. They should be
separated by at least one space.

Option Description

/? /h display help screen
/r run server in TSR mode
/s display server status
/t enable htaccess directory level
authentication
/u unload if resident
/c close listen
/d do not start remote console
/g allow old type (spawning) CGI
/p Passive mode
/i=<InterruptNumber> Interrupt number for cgi API
/m=<MemorySize> set memory size
/n=<MaximumConnections> number of simultaneous connections
/a=<ScreenX>, <ScreenY> set screen aspec
/v=<ScreenBufferSegment>[: set video buffer address (hex)
<ScreenBufferOffset>]
/k Abort all active connections and unload

Chapter 7 HTTP and FTP Server Application

ADAM-5510 Series User’s Manual 7-15

Remarks

ScreenX, ScreenY
The width and height of the screen
area to serve for the remote console
session. These values default to 80
and 25, respectively.

ScreenBufferSegment, ScreenBufferOffset

Together, a pointer to the top -left corner of
the display memory to serve for the
remote console session. These values
default to B000 and 0000 respectively, for
monochrome display adapters and to
B800 and 0000 respectively, for color
display adapters.

MemorySize

The maximum amount of memory available
to the server. The default value is 32K. The
value of m can range from 8192 to 63472.

MaximumConnections

The maximum number of simultaneous connections
allowed by the server.

InterruptNumber

The interrupt number to access the CGI API.

http_port
HTTP port to listen on. This parameter
defaults to the standard HTTP port
number of 80.

ftp_port

FTP port to listen on. This parameter defaults to the
standard FTP port number of 21

rc_port

Remote Console port to listen on. This parameter defaults
to 81.

Configuration File

HTTPFTPD uses the standard SOCKET.UPW
file for validating logins. The file is composed
of text lines, each representing a login name,
password, and the configuration to use for a
session opened with those credentials.

Chapter 7 HTTP and FTP Server Application

7-16 ADAM-5510 Series User’s Manual

Space characters separate the parameters in
the file, which are in the following format:

name password directory rights

The location of the username/password file
to be used by the server is specified by the
environment variable SOCKETS as follows:

%SOCKETS% \SOCKET.UPW

If the variable SOCKETS is not specified, the following file is
used:

\DL\SOCKETS\SOCKET.UPW

Configuration File Parameters
name

The login name of this record.

password
The password to authenticate a user trying to login as this
name.

directory

The starting directory for this user.

w means that this user has write access.

c means that this user has permission to make new
directories.

d means that this user has permission to
change to a directory other than his starting
location and subdirectories from the starting
location.

e means that this user may 'get' files

p means that this user may 'post' files

g means that this user may use cgi

m means that this user may use Remote Console

Example Command Lines

HTTPFTPD /m=40000 /r
HTTPFTPD /a=80,25 /v=a000:0000 /r

Appendix A
COM Port Register Structure

Appendix A COM Port Register Structure

A-2 ADAM-5510 Series User’s Manual

This appendix gives a short description of each module’s
registers. For more information, please refer to the
STARTECH 16C550 UART chip data book. All registers are
one byte. Bit 0 is the least significant bit, and bit 7 is the
most significant bit. The address of each register is specified
as an offset from the port base address (BASE), COM1 is
3F8h and COM2 is 2F8h.

DLAB is the “Divisor Latch Access Bit”, bit 7 of BASE+3.

BASE+0 Receiver buffer register when DLAB=0 and the
operation is a read.

BASE+0 Transmitter holding register when
DLAB=0 and the operation is write.

BASE+0 Divisor latch bits 0 - 7 when DLAB=1
BASE+1 Divisor latch bits 8-15 when DLAB=1.

Bytes BASE+0 and BASE+1 together form a 16-bit number,
the divisor, which determines the baud rate. Set the divisor
as follows:

Baud rate Divisor Baud rate Divisor

50 2304 2400 48

75 1536 3600 32
110 1047 4800 24

133.5 857 7200 16
150 768 9600 12
300 384 19200 6
600 192 38400 3
1200 96 56000 2
1800 64 115200 1
2000 58 x x

Appendix A COM Port Register Structure

ADAM-5510 Series User’s Manual A-3

BASE+1 Interrupt Status Register (ISR) when DLAB=0
bit 0: Enable received-data-available interrupt
bit 1: Enable transmitter-holding-register-empty
interrupt
bit 2: Enable receiver-line-status interrupt
bit 3: Enable modem-status interrupt

BASE+2 FIFO Control Register (FCR)

bit 0: Enable transmit and receive FIFOs
bit 1: Clear contents of receive FIFO
bit 2: Clear contents of transmit FIFO
bits 6-7: Set trigger level for receiver FIFO
interrupt

Bit 7 Bit 6 FIFO trigger level
0 0 01
0 1 04
1 0 08
1 1 14

BASE+3 Line Control Register (LCR)
bit 0: Word length select bit 0
bit 1: Word length select bit 1

Bit 1 Bit 0 Word length
(bits)

0 0 5
0 1 6
1 0 7
1 1 8

Appendix A COM Port Register Structure

A-4 ADAM-5510 Series User’s Manual

BASE+4 Modem Control Register (MCR)
bit 0: DTR
bit 1: RTS

BASE+5 Line Status Register (LSR)
bit 0: Receiver data ready
bit 1: Overrun error
bit 2: Parity error
bit 3: Framing error
bit 4: Break interrupt
bit 5: Transmitter holding register empty
bit 6: Transmitter shift register empty
bit 7: At least one parity error, framing error or
break indication in the FIFO

BASE+6 Modem Status Register (MSR)
bit 0: Delta CTS
bit 1: Delta DSR
bit 2: Trailing edge ring indicator
bit 3: Delta received line signal detect
bit 4: CTS
bit 5: DSR
bit 6: RI
bit 7: Received line signal detect

BASE+7 Temporary data register

Appendix B
Data Formats and I/O Ranges

Appendix B Data Formats and I/O Ranges

B-2 ADAM-5510 Series User’s Manual

B.1 Analog Input Formats

The ADAM analog input modules can be configured to
transmit data to the host in Engineering Units.

Engineering Units

Data can be represented in Engineering Units by setting bits
0 and 1 of the data format/checksum/integration time
parameter to 0. This format presents data in natural units,
such as degrees, volts, millivolts, and milliamps. The
Engineering Units format is readily parsed by the majority of
computer languages because the total data string length,
including sign, digits and decimal point, does not exceed
seven characters.

The data format is a plus (+) or minus (-) sign, followed
by five decimal digits and a decimal point. The input
range which is em- ployed determines the resolution, or
the number of decimal places used, as illustrated in the
following table:

Input Range Resolution

±15 mV, ±50 mV 1 µV (three decimal places)

±100 mV, ±150 mV, ±500 mV 10 µV (two decimal places)

±1 V, ±2.5 V, ±5 V 100 µV (four decimal places)

±10 V 1 mV (three decimal places)

±20 mA 1 µA (three decimal places)

Type J and T thermocouple 0.01ºC (two decimal places)

Type K, E, R, S, and B
thermocouple 0.1ºC (one decimal place)

Appendix B Data Formats and I/O Ranges

ADAM-5510 Series User’s Manual B-3

Example 1

The input value is -2.65 V and the corresponding analog
input module is configured for a range of ±5 V. The
response to the Analog Data In command is:

-2.6500(cr)

Example 2

The input value is 305.5ºC. The analog input module is
configured for a Type J thermocouple whose range is 0ºC
to 760ºC. The re- sponse to the Analog Data In
command is:

+305.50(cr)

Example 3

The input value is +5.653 V. The analog input module is
configured for a range of ±5 V range. When the
engineering units format is used, the ADAM Series analog
input modules are configured so that they automatically
provide an over range capability. The response to the
Analog Data In command in this case is:

+5.6530(cr)

Appendix B Data Formats and I/O Ranges

B-4 ADAM-5510 Series User’s Manual

B.2 Analog Input Ranges - ADAM-5017

Module Range

Code

Input
Range

Description

Data
Formats +F.S. Zero -F.S. Displayed

Resolution
Actual
Value

Engineering
Units +10.000 ±00.000 -10.000 1 mV

% of FSR +100.00 ±000.00 -100.00 0.01% 08h ±10 V

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
1000

Engineering
Units +5.0000 ±0.0000 -5.0000 100.00 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 09h ±5 V

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
1000

Engineering
Units +1.0000 ±0.0000 -1.0000 100.00 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 0Ah ±1 V

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
10000

Engineering
Units +500.00 ±000.00 -500.00 10 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 0Bh ±500 mV

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
10

Engineering
Units +150.00 ±000.00 -150.00 10 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 0Ch ±150 mV

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
100

Engineering
Units +20.000 ±00.000 -20.000 1 µV

% of FSR +100.00 ±000.00 -100.00 0.01%

ADAM-5017

0Dh ±20 mA

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
1000

Appendix B Data Formats and I/O Ranges

ADAM-5510 Series User’s Manual B-5

B.3 Analog Input Ranges - ADAM-5018

Module Range

Code

Input
Range

Description

Data
Formats +F.S. Zero -F.S. Displayed

Resolution
Actual
Value

Engineering
Units +15.000 ±00.000 -15.000 1 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 00h ±15 mV

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
1000

Engineering
Units +50.000 ±00.000 -50.000 1 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 01h ±50 mV

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
100

Engineering
Units +100.00 ±000.00 -100.00 10 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 02h ±100 mV

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
100

Engineering
Units +500.00 ±000.00 -500.00 10 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 03h ±500 mV

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
10

Engineering
Units +1.0000 ±0.0000 -1.0000 100 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 04h ±1 V

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
10000

Engineering
Units +2.5000 ±0.0000 -2.5000 100 µV

% of FSR +100.00 ±000.00 -100.00 0.01% 05h ±2.5 V

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
10000

Engineering
Units +20.000 ±00.000 -20.000 1 µA

% of FSR +100.00 ±000.00 -100.00 0.01% 06h ±20 mA

Two's
Complement 7FFF 0000 8000 1 LSB

Reading/
1000

ADAM-5018

07h Not Used

Appendix B Data Formats and I/O Ranges

B-6 ADAM-5510 Series User’s Manual

Module Range

Code
Input Range
Description

Data
Formats

Maximum
Specified
Signal

Minimum
Specified
Signal

Displayed
Resolution

Actual
Value

Engineering
Units +760.00 +000.00 0.1°C

% of FSR +100.00 +000.00 0.01% 0Eh
Type J
Thermocouple
0°C to 760°C

Two's
Complement 7FFF 0000 1 LSB

Reading/
10

Engineering
Units +1370.0 +0000.0 0.1°C

% of FSR +100.00 +000.00 0.01% 0Fh
Type K
Thermocouple
0°C to 1370°C

Two's
Complement 7FFF 0000 1 LSB

Reading/
10

Engineering
Units +400.00 -100.00 0.1°C

% of FSR +100.00 -025.00 0.01% 10h

Type T
Thermocouple
-100°C to
400°C Two's

Complement 7FFF E000 1 LSB

Reading/
10

Engineering
Units +1000.00 +0000.0 0.1°C

% of FSR +100.00 ±000.00 0.01% 11h
Type E
Thermocouple
0°C to 1000°C

Two's
Complement 7FFF 0000 1 LSB

Reading/
10

Engineering
Units +1750.0 +0500.0 0.1°C

% of FSR +100.00 +028.57 0.01% 12h

Type R
Thermocouple
500°C to
1750°C Two's

Complement 7FFF 2492 1 LSB

Reading/
10

Engineering
Units +1750.0 +0500.00 0.1°C

% of FSR +100.00 +028.57 0.01% 13h

Type S
Thermocouple
500°C to
1750°C Two's

Complement 7FFF 2492 1 LSB

Reading/
10

Engineering
Units +1800.0 +0500.0 0.1°C

% of FSR +100.00 +027.77 0.01%

ADAM-5018

14h

Type B
Thermocouple
500°C to
1800°C Two's

Complement 7FFF 2381 1 LSB

Reading/
10

Appendix B Data Formats and I/O Ranges

ADAM-5510 Series User’s Manual B-7

B.4 Analog Input Ranges - ADAM-5017H

Range
Code

Input
Range Data Formats +Full

Scale Zero -Full
Scale

Displayed
Resolution

00h ±10 V Engineering 11 0 -11 2.7 mV

 Two's Comp 0FFF 0 EFFF 1

01h 0 ~ 10 V Engineering 11 0 Don't care 2.7 mV

 Two's Comp 0FFF 0 Don't care 1

02h ±5 V Engineering 5.5 0 -5.5 1.3 mV

 Two's Comp 0FFF 0 EFFF 1

03h 0 ~ 5 V Engineering 5.5 0 Don't care 1.3 mV

 Two's Comp 0FFF 0 Don't care 1

04h ±2.5 V Engineering 2.75 0 -2.75 0.67 mV

 Two's Comp 0FFF 0 EFFF 1

05h 0 ~ 2.5 V Engineering 2.75 0 Don't care 0.67 mV

 Two's Comp 0FFF 0 Don't care 1

06h ±1 V Engineering 1.375 0 -1.375 0.34 mV

 Two's Comp 0FFF 0 EFFF 1

07h 0 ~ 1 V Engineering 1.375 0 Don't care 0.34 mV

 Two's Comp 0FFF 0 Don't care 1

08h ±500 mV Engineering 687.5 0 -687.5 0.16 mV

 Two's Comp 0FFF 0 EFFF 1

09h 0 ~ 500
mV Engineering 687.5 0 Don't care 0.16 mV

 Two's Comp 0FFF 0 Don't care 1

0ah 4 ~ 20 mA Engineering 22 4.0 Don't care 5.3 µA

 Two's Comp 0FFF 02E9 Don't care 1

0bh 0 ~ 20 mA Engineering 22 0 Don't care 5.3 µA

 Two's Comp 0FFF 0 Don't care 1

Note: The full scale values in this table are theoretical values for your
reference; actual values will vary.

Appendix B Data Formats and I/O Ranges

B-8 ADAM-5510 Series User’s Manual

B.5 Analog Output Formats

You can configure ADAM analog output modules to receive
data from the host in Engineering Units.

Engineering Units

Data can be represented in engineering units by setting bits
0 and 1 of the data format/checksum/integration time
parameter to 0. This format presents data in natural units,
such as milliamps. The Engineering Units format is
readily parsed by the majority of computer languages as the
total data string length is fixed at six characters: two
decimal digits, a decimal point and three decimal digits. The
resolution is 5 µA.

Example:

An analog output module on channel 1 of slot 0 in an
ADAM-5000 system at address 01h is configured for a 0
to 20 mA range. If the output value is +4.762 mA, the
format of the Analog Data Out command would be
#01S0C14.762<cr>

B.6 Analog Output Ranges

Range Code
Output
Range

Description

Data
Formats

Maximum
Specified

Signal

Minimum
Specified

Signal

Displayed
Resolution

Engineering
Units 20.000 00.000 5 µA

% of Span +100.00 +000.00 5 µA 30 0 to 20 mA

Hexadecimal
Binary FFF 000 5 µA

Engineering
Units 20.000 04.000 5 µA

% of Span +100.00 +000.00 5 µA 31 4 to 20 mA
Hexadecimal

Binary FFF 000 5 µA

Engineering
Units 10.000 00.000 2.442 mV

% of Span +100.00 +000.00 2.442 mV 32 0 to 10 V
Hexadecimal

Binary FFF 000 2.442 mV

Appendix B Data Formats and I/O Ranges

ADAM-5510 Series User’s Manual B-9

B.7 ADAM-5013 RTD Input Format and Ranges

Range

Code (hex)
Input Range
Description Data Formats

Maximum
Specified
Signal

Minimum
Specified
Signal

Displayed
Resolution

20

100 Ohms
Platinum RTD
-100 to 100°C
a=0.00385

Engineering Units +100.00 -100.00 ±0.1°C

21

100 Ohms
Platinum RTD 0
to 100°C
a=0.00385

Engineering Units +100.00 +000.00 ±0.1°C

22

100 Ohms
Platinum RTD 0
to 200°C
a=0.00385

Engineering Units +200.00 +000.00 ±0.2°C

23

100 Ohms
Platinum RTD 0
to 600°C
a=0.00385

Engineering Units +600.00 +000.00 ±0.6°C

24

100 Ohms
Platinum RTD
-100 to 100°C
a=0.00392

Engineering Units +100.00 -100.00 ±0.1°C

25

100 Ohms
Platinum RTD 0
to 100°C
a=0.00392

Engineering Units +100.00 +000.00 ±0.1°C

26

100 Ohms
Platinum RTD 0
to 200°C
a=0.00392

Engineering Units +200.00 +000.00 ±0.2°C

Note: See next page for table continuation.

Appendix B Data Formats and I/O Ranges

B-10 ADAM-5510 Series User’s Manual

Note: This table continued from previous page.

27

100 Ohms
Platinum RTD
0 to 600°C
a=0.00392

Engineering
Units +600.00 +000.00 ±0.6°C

28
120 Ohms
Nickel RTD
-80 to 100°C

Engineering
Units +100.00 -80.00 ±0.1°C

29
120 Ohms
Nickel RTD 0
to 100°C

Engineering
Units +100.00 +000.00 ±0.1°C

Appendix B Data Formats and I/O Ranges

ADAM-5510 Series User’s Manual B-11

ADAM 5000 AI/AO Scaling

Module Type Range
Low

Range
High Scale Low Scale High Data

Format
-100 100 0 65535 U16B

0 100 0 65535 U16B
0 200 0 65535 U16B

385(IEC)

0 600 0 65535 U16B
-100 100 0 65535 U16B

0 100 0 65535 U16B
0 200 0 65535 U16B

395(JIS)

0 600 0 65535 U16B
-80 100 0 65535 U16B

5013RTD

Ni
0 100 0 65535 U16B

mV -150 150 0 65535 U16B
mV -500 500 0 65535 U16B
V -1 1 0 65535 U16B
V -5 5 0 65535 U16B
V -10 10 0 65535 U16B

5017AI

mA -20 20 0 65535 U16B
mV -500 500 0 4095 U12B
mV 0 500 0 4095 U12B
V -10 10 0 4095 U12B
V 0 10 0 4095 U12B
V -5 5 0 4095 U12B
V 0 5 0 4095 U12B
V -2.5 2.5 0 4095 U12B
V 0 2.5 0 4095 U12B
V -1 1 0 4095 U12B
V 0 1 0 4095 U12B

mA 4 20 0 4095 U12B

5017H AI

mA 0 20 0 4095 U12B
mV -15 15 0 65535 U16B
mV -50 50 0 65535 U16B
mV -100 100 0 65535 U16B
mV -500 500 0 65535 U16B
V -1 1 0 65535 U16B
V -2.5 2.5 0 65535 U16B

mA -20 20 0 65535 U16B
T/C(J) 0 760 0 65535 U16B
T/C(K) 0 1370 0 65535 U16B
T/C(T) -100 400 0 65535 U16B
T/C(E) 0 1000 0 65535 U16B
T/C(R) 500 1750 0 65535 U16B
T/C(S) 500 1750 0 65535 U16B

5018 AI

T/C(B) 500 1800 0 65535 U16B
V 0 10 0 4095 U12B

mA 4 20 0 4095 U12B 5024 AO
mA 0 20 0 4095 U12B

Appendix C
RS-485 Network

Appendix C RS-485 Network

C-2 ADAM-5510 Series User’s Manual

EIA RS-485 is the industry’s most widely used bidirectional,
balanced transmission line standard. It is specifically developed
for industrial multi-drop systems that should be able to transmit
and receive data at high rates or over long distances.

The specifications of the EIA RS-485 protocol are as follows:

 Maximum line length per segment: 1200 meters (4000

feet)

 Throughput of 10 Mbaud and beyond -Differential
transmission
(balanced lines) with high resistance against noise

 Maximum 32 nodes per segment

 Bi-directional master-slave communication over a
single set of twisted-pair cables

 Parallel connected nodes, true multi-drop

ADAM-5510 Series Controller is fully isolated and use just a
single set of twisted pair wires to send and receive! Since the
nodes are connected in parallel they can be freely disconnected
from the host without affecting the functioning of the remaining
nodes. An industry standard, shielded twisted pair is preferable
due to the high noise ratio of the environment. When nodes
communicate through the network, no sending conflicts can
occur since a simple command/response sequence is used.
There is always one initiator (with no address) and many slaves
(with addresses). In this case, the master is a personal
computer that is connected with its serial, RS-232, port to an
ADAM RS-232/RS-485 converter. The slaves are the
ADAM-5510 Series Controller. When systems are not
transmitting data, they are in listen mode. The host computer
initiates a command/response sequence with one of the
systems. Commands normally contain the address of the
module the host wants to communicate with. The system with
the matching address carries out the command and sends its
response to the host.

Appendix C RS-485 Network

ADAM-5510 Series User’s Manual C-3

C.1 Basic Network Layout

Multi-drop RS-485 implies that there are two main wires in a
segment. The connected systems tap from these two lines
with so called drop cables. Thus all connections are parallel
and connecting or discon- necting of a node doesn’t affect
the network as a whole. Since ADAM-5510 Series Controller
use the RS-485 standard, they can connect and
communicate with the host PC. The basic layouts that can be
used for an RS-485 network are:

Daisychain
The last module of a segment is a repeater. It is directly
connected to the main-wires thereby ending the first segment
and starting the next segment. Up to 32 addressable systems
can be daisychained . This limitation is a physical one. When
using more systems per segment the IC driver current rapidly
decreases, causing communication errors. In total, the
network can hold up to 64 addressable systems. The limita-
tion on this number is the two-character hexadecimal address
code that can address 64 combinations. The ADAM converter,
ADAM repeaters and the host computer are non addressable
units and therefore are not included in these numbers.

Figure C-1: Daisychaining

Appendix C RS-485 Network

C-4 ADAM-5510 Series User’s Manual

Star Layout
In this scheme the repeaters are connected to drop-down
cables from the main wires of the first segment. A tree
structure is the result. This scheme is not recommended
when using long lines since it will cause a serious amount of
signal distortion due to signal reflections in several
line-endings.

Figure C-2: Star structure

Appendix C RS-485 Network

ADAM-5510 Series User’s Manual C-5

Random

This is a combination of daisychain and hierarchical structure.

Figure C-3: Random structure

Appendix C RS-485 Network

C-6 ADAM-5510 Series User’s Manual

C.2 Line Termination

Each discontinuity in impedance causes reflections and distortion.
When a impedance discontinuity occurs in the transmission line the
immediate effect is signal reflection. This will lead to signal
distortion. Specially at line ends this mismatch causes problems.
To eliminate this discontinuity, terminate the line with a resistor.

Figure C-4: Signal distortion

The value of the resistor should be a close as possible to the
charac- teristic impedance of the line. Although receiver devices
add some resistance to the whole of the transmission line, normally
it is sufficient to the resistor impedance should equal the
characteristic impedance of the line.

Example: Each input of the receivers has a nominal input
impedance of 18 k feeding into a diode transistor　 - resistor
biasing network that is equivalent to an 18 k input resistor tied 　
to a common mode voltage of 2.4 V. It is this configuration, which
provides the large common range of the receiver required for
RS-485 systems! (See Figure D-5 below).

Appendix C RS-485 Network

ADAM-5510 Series User’s Manual C-7

Figure C-5: Termination resistor locations

Because each input is biased to 2.4 V, the nominal
common mode voltage of balanced RS-485 systems, the
18 k on the input can be taken as being in series across 　
the input of each individual receiver. If thirty of these
receivers are put closely together at the end of the
transmission line, they will tend to react as thirty 36k 　
resistors in parallel with the termination resistor. The overall
effective resistance will need to be close to the
characteristics of the line. The effective parallel receiver
resistance RP will therefore be equal to:

RP = 36 x 103/30 = 1200Ω
While the termination receptor RT will equal:
RT = RO / [1 - RO/RP]
Thus for a line with a characteristic impedance of 100 　
resistor RT = 100/[1 - 100/1200] = 110Ω
Since this value lies within 10% of the line characteristic
impedance.

Appendix C RS-485 Network

C-8 ADAM-5510 Series User’s Manual

Thus as already stated above the line termination resistor RT
will normally equal the characteristic impedance Zo. The star
connection causes a multitude of these discontinuities since
there are several transmission lines and is therefore not
recommend.

Note: The recommend method wiring method, that

causes a minimum amount of reflection, is daisy
chaining where all receivers tapped from one
transmission line needs only to be terminated
twice.

C.3 RS-485 Data Flow Control

The RS-485 standard uses a single pair of wires to send and
receive data. This line sharing requires some method to
control the direction of the data flow. RTS (Request To Send)
and CTS (Clear To Send) are the most commonly used
methods.

Figure C-6: RS-485 data flow control with RTS

Intelligent RS-485 Control

ADAM-4510 and ADAM-4520 are both equipped with an I/O
circuit which can automatically sense the direction of the data
flow. No handshaking with the host (like RTS, Request to Send)
is necessary to receive data and forward it in the correct
direction. You can use any software written for half-duplex
RS-232 with an ADAM network without modification. The
RS-485 control is completely transparent to the user.

Appendix D
Grounding Reference

Appendix D Grounding Reference

D-2 ADAM-5510 Series User’s Manual

Field Grounding and Shielding Application

Overview

Unfortunately, it’s impossible to finish a system integration
task at one time. We always meet some trouble in the field. A
communication network or system isn’t stable, induced noise
or equipment is damaged or there are storms. However, the
most usual issue is just simply improper wiring, ie, grounding
and shielding. You know the 80/20 rule in our life: we spend
20% time for 80% work, but 80% time for the last 20% of the
work. So is it with system integration: we pay 20% for Wire /
Cable and 0% for Equipment. However, 80% of reliability
depends on Grounding and Shielding. In other words, we
need to invest more in that 20% and work on these two
issues to make a highly reliable system. This application note
brings you some concepts about field grounding and
shielding. These topics will be illustrated in the following
pages.

1. Grounding

1.1 The ‘Earth’ for reference

1.2 The ‘Frame Ground’ and ‘Grounding Bar’

1.3 Normal Mode and Common Mode

1.4 Wire impedance

1.5 Single Point Grounding

2. Shielding

2.1 Cable Shield

2.2 System Shielding

3. Noise Reduction Techniques

4. Check Point List

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-3

D.1 Grounding

D-1.1 The ‘Earth’ for reference

Figure D-1: Think the EARTH as GROUND.

As you know, the EARTH cannot be conductive. However,
all build- ings lie on, or in, the EARTH. Steel, concrete and
associated cables (such as lighting arresters) and power
system were connected to EARTH. Think of them as
resistors. All of those infinite parallel resistors make the
EARTH as a single reference point.

Appendix D Grounding Reference

D-4 ADAM-5510 Series User’s Manual

D-1.2 The ‘Frame Ground’ and ‘Grounding Bar’

Figure D-2: Grounding Bar.

Grounding is one of the most important issues for our system.
Just like Frame Ground of the computer, this signal offers a
reference point of the electronic circuit inside the computer. If
we want to communicate with this computer, both Signal
Ground and Frame Ground should be connected to make a
reference point of each other’s electronic circuit. Generally
speaking, it is necessary to install an individual grounding
bar for each system, such as computer networks, power
systems, telecommunication networks, etc. Those individual
grounding bars not only provide the individual reference
point, but also make the earth a our ground!

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-5

Figure D-3: Normal mode and Common mode.

D-1.3 Normal Mode and Common Mode
Have you ever tried to measure the voltage between a live
circuit and a concrete floor? How about the voltage between
neutral and a concrete floor? You will get nonsense values.
‘Hot’ and ‘Neutral’ are just relational signals: you will get
110VAC or 220VAC by measuring these signals. Normal
mode and common mode just show you that the Frame
Ground is the most important reference signal for all the
systems and equipments.

Appendix D Grounding Reference

D-6 ADAM-5510 Series User’s Manual

Figure D-4: Normal mode and Common mode.

• Ground-pin is longer than others, for first contact to
power system and noise bypass.

• Neutral-pin is broader than Live-pin, for reducing
contact imped- ance.

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-7

D-1.4 Wire impedance

Figure D-5: The purpose of high voltage transmission

• What’s the purpose of high voltage transmission? We
have all seen high voltage transmission towers. The power
plant raises the voltage while generating the power, then a
local power station steps down the voltage. What is the
purpose of high voltage transmission wires ? According to
the energy formula, P = V * I, the current is reduced when
the voltage is raised. As you know, each cable has
impedance because of the metal it is made of. Referring to
Ohm’s Law, (V = I * R) this decreased current means lower
power losses in the wire. So, high voltage lines are for
reducing the cost of moving electrical power from one place
to another.

Appendix D Grounding Reference

D-8 ADAM-5510 Series User’s Manual

Figure D-6: wire impedance.

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-9

D-1.5 Single Point Grounding

Figure D-7: Single point grounding. (1)

• What’s Single Point Grounding? Maybe you have had an
unpleasant experience while taking a hot shower in Winter.
Someone turns on a hot water faucet somewhere else. You
will be impressed with the cold water! The bottom diagram
above shows an example of how devices will influence each
other with swift load change. For example, normally we turn
on all the four hydrants for testing. When you close the
hydrant 3 and hydrant 4, the other two hydrants will get more
flow. In other words, the hydrant cannot keep a constant flow
rate.

Appendix D Grounding Reference

D-10 ADAM-5510 Series User’s Manual

Figure D-8: Single point grounding. (2)

The above diagram shows you that a single point
grounding system will be a more stable system. If you use
thin cable for powering these devices, the end device will
actually get lower power. The thin cable will consume the
energy.

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-11

D.2 Shielding

D-2.1 Cable Shield

Figure D-9: Single isolated cable

• Single isolated cable The diagram shows the structure of
an isolated cable. You see the isolated layer which is
spiraled Aluminum foil to cover the wires. This spiraled
structure makes a layer for shielding the cables from
external noise.

Appendix D Grounding Reference

D-12 ADAM-5510 Series User’s Manual

Figure D-10: Double isolated cable

• Double isolated cable Figure 10 is an example of a double
isolated cable. The first isolating layer of spiraled aluminum foil
covers the conductors. The second isolation layer is several
bare conductors that spiral and cross over the first shield layer.
This spiraled structure makes an isolated layer for reducing
external noise. Additionally, follow these tips just for your
reference.

• The shield of a cable cannot be used for signal ground. The
shield is designed for carrying noise, so the environment noise
will couple and interfere with your system when you use the
shield as signal ground.

• The higher the density of the shield - the better, especially for
communication network.

• Use double isolated cable for communication network / AI / AO.
• Both sides of shields should be connected to their frame while

inside the device. (for EMI consideration)
• Don’t strip off too long of plastic cover for soldering.

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-13

D-2.2 System Shielding

Figure D-11: System Shielding

• Never stripping too much of the plastic cable cover. This is
improper and can destroy the characteristics of the
Shielded-Twisted-Pair cable. Besides, the bare wire shield
easily conducts the noise.

• Cascade these shields together by soldering. Please refer to
follow- ing page for further detailed explanation.

• Connect the shield to Frame Ground of DC power supply to
force the conducted noise to flow to the frame ground of the
DC power supply. (The ‘frame ground’ of the DC power supply
should be connected to the system ground)

Appendix D Grounding Reference

D-14 ADAM-5510 Series User’s Manual

Figure D-12: The characteristic of the cable

• The characteristic of the cable Don’t strip off too much
insulation for soldering. This could change the effectiveness of
the Shielded-Twisted-Pair cable and open a path to introduce
unwanted noise.

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-15

Figure D-13: System Shielding (1)

• Shield connection (1)

If you break into a cable, you might get in a hurry to achieve
your goal. As in all electronic circuits, a signal will use the path
of least resis- tance. If we make a poor connection between
these two cables we will make a poor path for the signal. The
noise will try to find another path for easier flow.

Appendix D Grounding Reference

D-16 ADAM-5510 Series User’s Manual

Figure D-14: System Shielding (2)

• Shield connection (2)

The previous diagram shows you that the fill soldering just
makes an easier way for the signal.

Appendix D Grounding Reference

ADAM-5510 Series User’s Manual D-17

D.3 Noise Reduction Techniques

• Isolate noise sources in shielded enclosures.
• Place sensitive equipment in shielded enclosure and away

from computer equipment.
• Use separate grounds between noise sources and signals.
• Keep ground/signal leads as short as possible.
• Use Twisted and Shielded signal leads.
• Ground shields on one end ONLY while the reference

grounds are not the same.
• Check for stability in communication lines.
• Add another Grounding Bar if necessary.
• The diameter of power cable must be over 2.0 mm2.
• Independent grounding is needed for A/I, A/O, and

communication network while using a jumper box.
• Use noise reduction filters if necessary. (TVS, etc)
• You can also refer to FIPS 94 Standard. FIPS 94

recommends that the computer system should be placed
closer to its power source to eliminate load-induced common
mode noise.

Figure D-15: Noise Reduction Techniques

Appendix D Grounding Reference

D-18 ADAM-5510 Series User’s Manual

D.4 Check Point List

• Follow the single point grounding rule?

• Normal mode and common mode voltage?

• Separate the DC and AC ground?

• Reject the noise factor?

• The shield is connected correctly?

• Wire size is correct?

• Soldered connections are good?

• The terminal screw are tight?

