
User's Manual

Ethernet-based Data Acquisition and Control Modules

Evolved for the eWorld

Select Your Hardware Component
Hardware Installation Guide
I/O Module introduction
System Configuration Guide
Plan Your Application Program

First Edition

Copyright Notice
This document is copyrighted, 2002, by Advantech Co., Ltd. All rights are
reserved. Advantech Co., Ltd., reserves the right to make improvements to the
products described in this manual at any time without notice.
No part of this manual may be reproduced, copied, translated or transmitted in any
form or by any means without the prior written permission of Advantech Co., Ltd.
Information provided in this manual is intended to be accurate and reliable.
However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any
infringements upon the rights of third parties which may result from its use.

Acknowledgments
IBM and PC are trademarks of International Business Machines Corporation.

 Part No. 2001600000 First Edition
 Printed in Taiwan Mar. 2002

Product Warranty
Advantech warrants to you, the original purchaser, that each of its products will be
free from defects in materials and workmanship for two year from the date of
purchase.
This warranty does not apply to any product which have been repaired or altered by
other than repair personnel authorized by Advantech, or which have been subject to
misuse, abuse, accident or improper installation. Advantech assumes no liability as a
consequence of such events under the terms of this Warranty.
Because of Advantech’s high quality-control standards and rigorous testing, most of
our customers never need to use our repair service. If an Advantech product ever does
prove defective, it will be repaired or replaced at no charge during the warranty period.
For out-of-warranty repairs, you will be billed according to the cost of replacement
materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:
1. Collect all the information about the problem encountered (e.g. type of PC, CPU

speed, Advantech products used, other hardware and software used etc.). Note
anything abnormal and list any on-screen messages you get when the problem
occurs.

2. Call your dealer and describe the problem. Please have your manual, product, and
any helpful information readily available.

3. If your product is diagnosed as defective, you have to request an RAM number.
When requesting an RMA (Return Material Authorization) number, please access
ADVANTECH's RMA web site: http://www.advantech.com.tw/rma. If the web
sever is shut down, please contact our office directly. You should fill in the
"Problem Repair Form", describing in detail the application environment,
configuration, and problems encountered. Note that error descriptions such as
"does not work" and "failure" are so general that we are then required to apply our
internal standard repair process.

4. Carefully pack the defective product, a completely filled-out Repair and
Replacement Order Card and a photocopy of dated proof of purchase (such as your
sales receipt) in a shippable container. A product returned without dated proof of
purchase is not eligible for warranty service.

5. Write the RMA number visibly on the outside of the package and ship it prepaid to
your dealer.

Technical Support
We want you to get the maximum performance from your products. So if you run into
technical difficulties, we are here to help. For most frequently asked questions you
can easily find answers in your product documentation. Moreover, there are a huge
database about trouble-shooting and knowledge Base as technical reference on our
website. These answers are normally a lot more detailed than the ones we can give
over the phone.
So please consult this manual or the web site first. If you still cannot find the answer,
gather all the information or questions that apply to your problem and, with the
product close at hand, call your dealer. Our dealers are well trained and ready to give
you the support you need to get the most from your Advantech products. In fact, most
problems reported are minor and are able to be easily solved over the phone.
In addition, free technical support is available from Advantech engineers every
business day. We are always ready to give advice on application requirements or
specific information on the installation and operation of any of our products.

Website information:
You can access the most current support on our website:
http://www.advantech.com
Then click the title of “Service & Support” for further product information.

http://www.advantech.com/

Manual Organization

This Manual has six chapters, three appendices.

The following table lists each chapter or appendices with its corresponding title and a brief overview of the topics covered in it.

Chapter /
Appendix Title Topics Covered

1 Understanding Your System
Introduces the suitable applying industries and the position
in an Ethernet remote system. Summarize the features and
the common specification of ADAM-6000. Explains the
functions of the LED indicators.

2 Selecting Your Hardware

Provides a briefly selection chart and specification table of
ADAM-6000 I/O modules for users to organize their
system easily. Give a direction to calculate system capacity
and select a certain power supply. Recommend a standard
for communication cable and connector.

3 Hardware Installation Guide

Lists the necessary components and proper environment in
installing process. Describes the Hardware dimension and
the way to place or mount it. Explains the rule of mapping
I/O address. Describes the wiring and connecting detail for
ADAM-6000.

4 I/O Module Introduction Introduces the detail specifications, functions and
application wiring of each ADAM-6000 I/O modules.

5 System Configuration Guide
Guides users to use Windows Utility for network &
security setting, I/O range configuration, accuracy
calibration, command setting, and so on.

6 Planning Your Application Program

Demonstrate the standard web page operation and the
customization web page development. Introduces the
functions and structure of DLL drivers and command sets.
Explain how to integrate these programming tools to plan
your application program.

A Design Worksheets Provides organized worksheets for users to establish
system configuration document in order.

B Data Formats and I/O Range Provides detail information about Data formats and I/O
Range of Analog Module.

C Grounding Reference Explains the concepts about field grounding and shielding.

How to use this manual
The following flow chart demonstrates a thought process that you can use when you
plan your ADAM-6000 Ethernet Data Acquisition and Control System.

 Chapter 1
 Understanding Your System

 Using this Chapter

If you want to read about Go to page

Introduction 1-2

Major Feature 1-3

Technical Specification 1-5

LED Status of ADAM-6000 I/O Modules 1-7

1-1 Introduction
ADAM-6000, Ethernet-based data acquisition and control module, provides I/O, data
acquisition and networking in one module to build a cost-effective, distributed
monitoring, and control solutions for a wide variety of industries and applications.
Through de-factor standard Ethernet networking, ADAM-6000 retrieves I/O values
from sensors and publishes these real-time I/O value to networking nodes at local area
network or Intranet, Internet. With Ethernet-enabled technology, ADAM-6000 series
modules build up a cost-effective DA&C system for Building Automation,
environmental monitoring, facility management and eManufacturing applications.
Please refer to Figure 1-1 to have a brief view of ADAM-6000 system architecture.

 Figure 1-1 ADAM-6000 System Architecture

1-2 Major Features

1-2-1 Ethernet-enabled DA&C I/O Modules
ADAM-6000 is based on the popular Ethernet networking standards used today in most business

environments. Users can easily add ADAM-6000 I/O modules to existing Ethernet networks or use

ADAM-6000 modules in new Ethernet-enabled eManufacturing networks. ADAM-6000 module features

a 10/100 Mbps Ethernet chip and supports industrial popular Modus/TCP protocol over TCP/IP for data

connection. ADAM-6000 also supports UDP protocol over Ethernet networking. With UDP/IP,

ADAM-6000 I/O modules can actively send I/O data stream to 8 Ethernet nodes. Through Ethernet

networking HMI/SCADA system and controller can access or gather real-time data from ADAM-6000

Ethernet enabled DA&C modules. And, these real-time data can be integrated with business system to

create valuable, competitive business information immediately.

1-2-2 Intelligent I/O Modules
Enhancing from traditional I/O modules, ADAM-6000 I/O modules have pre-built intelligent mathematic

functions to empower the system capacity. The Digital Input modules provide Counter, Totalizer

functions; the Digital Output modules provide pulse output, delay output functions; the Analog Input

modules provide the Max./Min./Average data calculation; the Analog Output modules provide the PID

loop control function.

1-2-3 Mixed I/O in One Module to fit all application’s
ADAM-6000 mixed I/O module design concept provides the most cost-effective I/O usage for application

system. The most common used I/O type for single function unit are collected in ONE module. This

design concept not only save I/O usage and spare modules cost but also speed up I/O relative

operations. For small DA&C system or standalone control unit in a middle or large scale, ADAM-6000

mixed I/O design can easily fit application needs by one or two modules only. With additional embedded

control modules, ADAM-6000 can easily create a localized, less complex, and more distributed I/O

architecture.

1-2-4 Embedded web built web page for remote monitoring and diagnose
Each ADAM-6000 module features a pre-built I/O module web page to display real-time I/O data value,

alarm and module status thru LAN or Internet. Just Internet browser, users can easily monitor real-time

I/O data value and alarm no matter local site or remote site. Then, the web-enabled monitoring system

is completed immediately without any programming effort.

1-2-5 Industrial standard Modbus/TCP protocol supported for open connectivity
ADAM-6000 modules support the popular industrial standard, Modbus/TCP protocol, to connect with

Ethernet Controller or HMI/SCADA software built with Modbus/TCP driver. Advantech also provides

OPC server for Modbus/TCP to integrate ADAM-6000 I/O real-time data value with OPC client enabled

software. Users don’t need to take care of special drivers development.

1-2-6 Customization Web Page
Since ADAM-6000 modules built in a default web page, users has allowed to monitor and control the I/O

status in anywhere through Internet Explorer Browser. Move over, the ADAM-6000 modules could be

downloaded the user-defined web page for individual applications. Advantech has provided sample

programs of JAVA Script for users’ reference to design their own operator interface, then download it into

the specific ADAM-6000 modules via Windows Utility.

1-2-7 Software Support
Based on the Modbus/TCP standard, the ADAM-6000 firmware is a built-in Modbus/TCP server.

Therefore, Advantech provides the necessary DLL drivers, OPC Server, and Windows Utility for users

for client data for the ADAM-6000P. Users can configure this DA&C system via Windows Utility;

integrate with HMI software package via Modbus/TCP driver or Modbus/TCP OPC Server. Even more,

you can use the DLL driver and ActiveX to develop your own applications.

1-3 Common technical specification of ADAM-6000

• Ethernet: 10 BASE-T IEEE 802.3

100 BASE-TX IEEE 802.3u

• Wiring: UTP, category 5 or greater

• Bus Connection: RJ45 modular jack

• Comm. Protocol: Modbus/TCP on TCP/IP and UDP

• Data Transfer Rate: Up to 100 Mbps

• Unregulated 10 to 30VDC

• Protection: Over-voltage and power reversal

• Ethernet Communication: 1500 V DC

• I/O Module: 3000 V DC

• Status Indicator:

 Power, CPU, Communication (Link, Collide, 10/100 Mbps, Tx, Rx)

• Case: ABS with captive mounting hardware

• Plug-in Screw Terminal Block:

 Accepts 0.5 mm 2 to 2.5 mm 2 , 1 - #12 or 2 - #14 to #22 AWG

• Operating Temperature: - 10 to 70º C (14 to 158º F)

• Storage Temperature: - 25 to 85º C (-13 to 185º F)

• Humidity: 5 to 95%, non-condensing

• Atmosphere: No corrosive gases

NOTE: Equipment will operate below 30% humidity. However, static electricity problems occur much

more frequently at lower humidity levels. Make sure you take adequate precautions when you

touch the equipment. Consider using ground straps, anti-static floor coverings, etc. if you use the

equipment in low humidity environments.

1-4 Dimensions
The following diagrams show the dimensions of the ADAM-6000 l/O module in millimeters.

Figure 1-2: ADAM-6000 Module Dimension

1-5 LED Status of ADAM-6000 I/O Modules
There are two LEDs on the ADAM-6000 I/O Modules front panel. Each LEDs built with two indicators to

represent the ADAM-6000 system status, as explained below:

Figure 1-3: ADAM-6000 I/O Modules’ LED Indicators

(1) Status: Red indicator. This LED is blanking when ADAM-6000 module is running.

(2) Link: Green indicator. This LED is normal on whenever the ADAM-6000 module’s Ethernet wiring is

connected.

(3) Speed: Red indicator. This LED is on when the Ethernet communication speed is 100 Mbps.

(4) COM: Green indicator. This LED blinks whenever the ADAM-5000/TCP transmitting or receiving

data on Ethernet.

 Chapter 2
 Selecting Your Hardware Components

 Using this Chapter

If you want to read about Go to page

Selecting I/O Module 2-2

Selecting Link Terminal & Cable (Ethernet) 2-3

Selecting Operator Interface 2-4

2-1 Selecting I/O Module

To organize an ADAM-6000 remote data acquisition & control system, you need to select I/O modules to interface the host

PC with field devices or processes that you have previously determined. There are several things should be considered

when you select the I/O modules.

What type of I/O signal is applied in your system?

How much I/O is required to your system?

How will you place the I/O Modules to handle the I/O points in individual area of an entire field site.

How many ADAM-6000 I/O modules are required for distributed I/O points arrangement.

How many hubs are required for the connection of these Ethernet devices?

What is the required voltage range for each I/O module?

What isolation environment is required for each I/O module?

What are the noise and distance limitations for each I/O module?

Refer to table 2-1 as I/O module selection guidelines

Choose this type of
I/O module:

For these types of field
devices or operations
(examples):

Explanation:

Discrete input
module and block
I/O module

Selector switches,
pushbuttons, photoelectric
eyes, limit switches, circuit
breakers, proximity
switches, level switches,
motor starter contacts, relay
contacts, thumbwheel
switches

Input modules sense ON/OFF or
OPENED/CLOSED signals.

Discrete output
module and block
I/O module

Alarms, control relays,
fans, lights, horns, valves,
motor starters, solenoids

Output module signals interface with
ON/OFF or OPENED/CLOSED devices.

Analog input
module

Thermocouple signals,
RTD signals, temperature
transducers, pressure
transducers, load cell
transducers, humidity
transducers, flow
transducers, potentiometers.

Convert continuous analog signals into
input values for host device

Analog output
module

Analog valves, actuators,
chart recorders, electric
motor drives, analog meters

Interpret host device’s output to analog
signals (generally through transducers)
for field devices.

Table 2-1 I/O Selection Guidelines

2-2 Selecting Link Terminal and Cable
Use the RJ-45 connector to connect the Ethernet port of the ADAM-6000 to the Hub. The cable for

connection should be Category 3 (for 10Mbps data rate) or Category 5 (for 100Mbps data rate)

UTP/STP cable, which is compliant with EIA/TIA 586 specifications. Maximum length between the Hub

and any ADAM-6000 modules is up to 100 meters (approx. 300 ft).

Figure 2-1 Ethernet Terminal and Cable Connection

PIN NUMBER SIGNAL FUNCTION
1 RD+ Receive (+)
2 RD- Receive (-)
3 TD+ Transmit (+)
4 (Not Used) -
5 (Not Used) -
6 TD- Transmit (-)
7 (Not Used) -
8 (Not Used) -

Table 2-2 Ethernet RJ-45 port Pin Assignment

2-3 Selecting Operator Interface
To complete your data acquisition and control system, selecting the operator interface is necessary.

Adopting by Modbus/TCP Protocol, ADAM-6000 I/O modules exhibit high ability in system integration for

various applications.

If you want to read the real-time status of ADAM-6000 modules through the web page from anywhere

without any engineering effort, there are many Internet browser software:

� Internet Explorer, Netscape, and other browser with JAVA Machine…

If you want to develop your own web pages in the ADAM-6000 modules, the JAVA Script will be the

quick and easy programming tool to design a specific operator interface.

� J2EE Development Kit

If you want to integrate ADAM-6000 I/O with HMI (Human Machine Interface) software in a SCADA

(Supervisory Control and Data Acquisition) system, there are a lot of HMI software packages, which

support Modbus/TCP driver.

� Advantech Studio

� Wonderware InTouch

� Intellution Fix of i-Fix

� Any other software support Modbus/TCP protocol

Moreover, Advantech also provides OPC Server, the most easy-to-use data exchange tool in worldwide.

Any HMI software designed with OPC Client would be able to access ADAM-6000 I/O modules.

� Modbus/TCP OPC Server

If you want to develop your own application, the DLL driver and ActiveX will be the best tools to build up

user’s operator interface.

� ADAM-6000 DLL driver

� ADAM-6000 ActiveX

With these ready-to-go application software packages, tasks such as remote data acquisition, process

control, historical trending and data analysis require only a few keystrokes.

 Chapter 3
 Hardware Installation Guide

 Using this Chapter

If you want to read about Go to page

Determining the proper environment 3-2

Module Mounting 3-3

Wiring and Connection 3-7

3-1 Determining the proper environment
Before you start to install the ADAM-6000 modules, there are something needed to check.

3-1-1 Check the content of shipping box
Unpack the shipping boxes and make sure that the contents include:

� ADAM-6000 module with one bracket and DIN Rail adapter

� ADAM-6000 module User’s Notes

3-1-2 System Requirements
� Host computer

- IBM PC compatible computer with 486 CPU (Pentium is recommended)

- Microsoft 95/98/2000/NT 4.0 (SP3 or SP4)/XP or higher versions

- At least 32 MB RAM

- 20 MB of hard disk space available

- VGA color monitor

- 2x or higher speed CD-ROM

- Mouse or other pointing devices

- 10 or 100 Mbps Ethernet Card

� 10 or 100 Mbps Ethernet Hub (at least 2 ports)

� Two Ethernet Cable with RJ-45 connector

� Power supply for ADAM-6000 (+10 to +30 V unregulated)

3-2 Mounting
The ADAM-6000 modules designed with compact size and allowed to install in the field site as following

methods.

3-2-1 Panel mounting
Each ADAM-6000 Module has packed with a plastic panel mounting bracket. Users can refer the

dimension of the bracket to configure an optimal placement in the panel or cabinet. Fix the bracket first,

then, fix the ADAM-6000 module on the bracket.

Figure 3-1: ADAM-6000 panel mounting dimension

Figure 3-2: Fix ADAM-6000 module on the bracket

3-2-2 DIN rail mounting
The ADAM-6000 module can also be secured to the cabinet by using mounting rails. Fix the

ADAM-6000 module with the DIN Rail adapter as figure 3-3. Then secured it on the DIN rail as figure

3-4. If you mount the module on a rail, you should also consider using end brackets at each end of the

rail. The end brackets help keep the modules from sliding horizontally along the rail.

Figure 3-3: Fix ADAM-6000 module on the DIN rail adapter

Figure 3-4: Secure ADAM-6000 Module to a DIN rail

3-3 Wiring and Connections
This section provides basic information on wiring the power supply, I/O units, and network connection.

3-3-1 Power supply wiring
Although the ADAM-6000/TCP systems are designed for a standard industrial unregulated 24 V DC

power supply, they accept any power unit that supplies within the range of +10 to +30 VDC. The power

supply ripple must be limited to 200 mV peak-to-peak, and the immediate ripple voltage should be

maintained between +10 and +30 VDC. Screw terminals +Vs and GND are for power supply wiring.

Note: The wires used should be sized at least 2 mm.

Figure 3-5: ADAM-6000 Module power wiring

We advise that the following standard colors (as indicated on the modules) be used for power lines:

+Vs (R) Red

GND (B) Black

3-3-2 I/O modules wiring
The system uses a plug-in screw terminal block for the interface between I/O modules and field devices.

The following information must be considered when connecting electrical devices to I/O modules.

1. The terminal block accepts wires from 0.5 mm to 2.5 mm.

2. Always use a continuous length of wire. Do not combine wires to make them longer.

3. Use the shortest possible wire length.

4. Use wire trays for routing where possible.

5. Avoid running wires near high-energy wiring.

6. Avoid running input wiring in close proximity to output wiring where possible.

7. Avoid creating sharp bends in the wires.

Figure 3-6: ADAM-6000 I/O Module Terminal Block wiring

 Chapter 4
 I/O Module Introduction

 Using this Chapter

If you want to read about Go to page

Analog Input Module 4-2

Digital Input / Output Module 4-7

4-1 Analog Input Module
Analog input modules use an A/D converter to convert sensor voltage, current, thermocouple or RTD

signals into digital data. The digital data is then translated into engineering units. When prompted by the

host computer, the data is sent through a standard 10/100 based-T Ethernet interface. Users would able

to read the current status via pre-built web page or any HMI software package supported Modbus/TCP

protocol. The analog input modules protect your equipment from ground loops and power surges by

providing opto-isolation of the A/D input and trans-former based isolation up to 3,000 VDC .

ADAM-6017 8-channel Analog Input with 2/DO Module

The ADAM-6017 is a 16-bit, 8-channel analog differential input module that provides programmable

input ranges on all channels. It accepts millivoltage inputs (±100mV, ±500mV), voltage inputs (±1V, ±5V

and ±10V) and current input (±20 mA, 4~20 mA) and provides data to the host computer in engineering

units (mV, V or mA). In order to satisfy all plant needs in one module, ADAM-6017 has designed with 8

analog inputs and 2 digital outputs. Each analog channel is allowed to configure an individual range for

variety of applications.

ADAM-6017

Figure 4-1: ADAM-6017 8-channel Analog Input w/2DO Module

ADAM-6017 Specification
Analog Input:
• Effective resolution: 16-bit

• Channels: 8 differential

• lnput type: mV, V, mA

• lnput range: ±150 mV, ±500 mV, 0-5 V, ±10 V, 0-20 mA, 4-20 mA

• Isolation voltage: 3000 VDC

• Fault and overvoltage protection: Withstands overvoltage up to ±35 V

• Sampling rate: 10 samples/sec.

• Input impedance: 20 MW

• Bandwidth: 13.1 Hz @ 50 Hz, 15.72 Hz @ 60 Hz

• Accuracy: ±0.1% or better

• Zero drift: ±6 µV/° C

• Span drift: ±25 ppm/° C

• CMR @ 50/60 Hz: 92 dB min.

Digital Output:
• Channel: 2

 Open Collector to 30 V

 200 mA max. load

• Optical Isolation: 5000VRMS

Built-in Watchdog Timer

Power
• Power requirements: Unregulated +10 ~ +30 VDC

• Power consumption: 2 W

Application Wiring

Figure 4-2: ADAM-6017 millivoltage, voltage, and current Input Wiring

ADAM-6017 has built with a 120 Ω resistor in each channel, users do not have to add any resistors in

addition for current input measurement. Just adjust the jumper setting to choose the specific input type

you need. Refer to Figure 4-3, each analog input channel has built-in a jumper on the PCB for users to

set as a voltage mode or current mode.

Figure 4-3: ADAM-6017 Analog Input Type Setting

Figure 4-4: ADAM-6017 Digital Output wiring

Assigning address for ADAM-6017 Modules
Basing on Modbus/TCP standard, the addresses of the I/O channels in ADAM-6000 modules you place

in the system are defined by a simple rule. Please refer the Figures 4-5 to map the I/O address.

Figure 4-5: ADAM-6017 I/O Address Mapping

4-2 Digital I/O Module

ADAM-6050 18-channel Digital I/O Module
The ADAM-6050 is a high-density I/O module built-in a 10/100 based-T interface for seamless Ethernet

connectivity. It provides 12 digital input and 6 digital output channels with 5000VRMS Isolating protection.

All of the Digital Input channels support input latch function for important signal handling. Mean while,

these DI channels allow to be used as 1 KHz counter. Opposite to the intelligent DI functions, the Digital

Output channels also support pulse output function.

ADAM-6050

Figure 4-6: ADAM-6050 18-channel Digital I/O Module

ADAM-6050 Specification
Analog Input:
• Channel: 18

• I/O type: 12 DI & 6 DO

• Digital Input:

Dry Contact:

 Logic level 0: Close to GND

 Logic level 1: Open

 (Logic level status can be inversed by Utility)

• Digital Output:

Open Collector to 30 V

 200 mA max. load

• Optical Isolation: 5000VRMS

• Power Consumption: 2 W (Typical)

Application Wiring

Figure 4-7: ADAM-6050 Digital Input Wiring

Figure 4-8: ADAM-6050 Digital Output Wiring

Assigning address for ADAM-6050 Modules
Basing on Modbus/TCP standard, the addresses of the I/O channels in ADAM-6000 modules you place

in the system are defined by a simple rule. Please refer the Figures 4-10 to map the I/O address.

Figure 4-9 ADAM-6050 I/O Address Mapping

All Digital Input channels in ADAM-6050 are allowed to use as 32-bit counters (Each counter is

consisted of two addresses, Low word and High word). Users could configure the specific DI channels to

be counters via Windows Utility. The I/O address will be mapped as Figures 4-10.

Figure 4-10 ADAM-6050 Counter Address Mapping

ADAM-6051 16-channel Digital I/O w/Counter Module
The ADAM-6051 is a high-density I/O module built-in a 10/100 based-T interface for seamless Ethernet

connectivity. It provides 12 digital input, 2 digital output, and 2 counter (10 KHz) channels with 5000VRMS

Isolating protection. All of the Digital Input channels support input latch function for important signal

handling. Mean while, these DI channels allow to be used as 1 KHz counter. Opposite to the intelligent

DI functions, the Digital Output channels also support pulse output function.

ADAM-6051

Figure 4-11: ADAM-6051 16-channel Digital I/O w/Counter Module

ADAM-6051 Specification
• Channel: 16

• I/O type: 12DI / 2DO / 2Counter

• Digital Input:

Dry Contact:

 Logic level 0: Close to GND

 Logic level 1: Open

 (Logic level status can be inversed by Utility)

• Digital Output:

Open Collector to 30 V

 200 mA max. load

• Optical Isolation: 5000VRMS

• Counter:

 Maximum Count: 4,294,967,285(32 bit)

 Input frequency: 0.3 ~ 1000 Hz max. (frequency mode)

 5000 Hz max. (counter mode)

 Isolation voltage: 2500 VRMS

 Mode: Counter (Up/Down, Bi-direction), Frequency

• Power Consumption: 2 W (Typical)

Application Wiring

Figure 4-12: ADAM-6051 Digital Input Wiring

Figure 4-13: ADAM-6051 Digital Output and Counter Wiring

Assigning address for ADAM-6051 Modules
Basing on Modbus/TCP standard, the addresses of the I/O channels in ADAM-6000 modules you place

in the system are defined by a simple rule. Please refer the Figures 4-14 to map the I/O address.

Figure 4-14: ADAM-6051 I/O Address Mapping

All Digital Input channels in ADAM-6051 are allowed to use as 32-bit counters (Each counter is

consisted of two addresses, Low word and High word). Users could configure the specific DI channels to

be counters via Windows Utility. The I/O address will be mapped as Figures 4-15.

Figure 4-15: ADAM-6051 Counter Address Mapping

ADAM-6060 6-channel Relay Output with DI Module
The ADAM-6060 is a high-density I/O module built-in a 10/100 based-T interface for seamless Ethernet

connectivity. Bonding with an Ethernet port and web page, the ADAM-6060 offers 6 relay (form A) output

and 6 digital input channels. It supports contact rating as AC 120V @ 0.5A, and DC 30V @ 1A. All of the

Digital Input channels support input latch function for important signal handling. Mean while, these DI

channels allow to be used as 1 KHz counter. Opposite to the intelligent DI functions, the Digital Output

channels also support pulse output function.

ADAM-6060

Figure 4-16: ADAM-6060 6-channel Relay Output w/DI Module

ADAM-6060 Specification
• Channel: 12

• I/O type: 6 Relay & 6 DI

• Relay Output (Form A):

Contact rating: AC: 120 V @ 0.5 A

 DC: 30 V @ 1 A

 Breakdown voltage: 500 VAC (50/60 Hz)

 Relay on time: 7 msec; Relay off time: 3 msec.

 Total switching time: 10 msec.

 Insulation resistance: 1000 MW minimum at 500 VDC

• Digital Input:

 Dry Contact:

 Logic level 0: Close to GND

 Logic level 1: Open

 (Logic level status can be inversed by Utility)

• Optical Isolation: 5000VRMS

• Power Consumption: 2 W (Typical)

Application Wiring

Figure 4-17: ADAM-6060 Digital Input Wiring

Figure 4-18: ADAM-6060 Relay Output Wiring

Assigning address for ADAM-6060 Modules
Basing on Modbus/TCP standard, the addresses of the I/O channels in ADAM-6000 modules you place

in the system are defined by a simple rule. Please refer the Figures 4-19 to map the I/O address.

Figure 4-19: ADAM-6060 I/O Address Mapping

All Digital Input channels in ADAM-6060 are allowed to use as 32-bit counters (Each counter is

consisted of two addresses, Low word and High word). Users could configure the specific DI channels to

be counters via Windows Utility. The I/O address will be mapped as Figures 4-20.

Figure 4-20: ADAM-6060 Counter Address Mapping

 Chapter 5
 System Configuration Guide

 Using this Chapter

If you want to read about Go to page

System Hardware Configuration 5-2

Install Utility Software 5-3

I/O Module Configuration 5-10

I/O Module Calibration 5-17

Security Setting 5-18

Technical Emulation 5-19

This chapter explains how to use ADAM Ethernet I/O Utility to configure the ADAM-6000 modules for

various applications. Users can learn the hardware connection, software installation, communication

setting and every procedure for system configuration from these sections.

5-1 System Hardware Configuration
As we mentioned in chapter 3-1, you will need following items to complete your system hardware

configuration.

System Requirement

� Host computer

- IBM PC compatible computer with 486 CPU (Pentium is recommended)

- Microsoft 95/98/2000/NT 4.0 (SP3 or SP4) or higher versions

- At least 32 MB RAM

- 20 MB of hard disk space available

- VGA color monitor

- 2x or higher speed CD-ROM

- Mouse or other pointing devices

- 10 or 100 Mbps Ethernet Card

� 10 or 100 Mbps Ethernet Hub (at least 2 ports)

� Two Ethernet Cable with RJ-45 connector

� Power supply for ADAM-6000 (+10 to +30 V unregulated)

Make sure to prepare all of the items above, then connect the power and network wiring as figure 5-1.

Figure 5.1 Hardware Configuration

5-2 Install Utility Software on Host PC
Advantech provide free download Manual and Utility software for ADAM-6000 modules’ operation and

configuration. Link to the web site: www.advantech.com and click into the “Download Area” under

Service & Support site to get the latest version ADAM-6000 manual and Ethernet I/O Utility.

Once you download and setup the Utility software, there will be a shortcut of the Utility executive

program on Windows’ desktop after completing the installation.

Notes: This Utility would be able to support ADAM-5000/TCP and ADAM-6000 I/O modules.

5-3 ADAM Ethernet I/O Utility Overview
The Utility software offers a graphical interface that helps you configure the ADAM-6000 modules. It is

also very convenient to test and monitor your Remote DA&C System. The following guidelines will give

you some brief instructions on how to use this Utility.

● Main Menu

● Network Setting

● Adding Remote Station

● I/O Module Configuration

● Alarm Setting

● I/O Module Calibration

● Firmware and Web Page Update

● Security Setting

● Terminal emulation

● Data Stream

● RS-458 Modbus Network Setting

http://www.advantech.com/

5-3-1 Main Menu
Double Click the icon of ADAM Ethernet I/O Utility shortcut, the Operation screen will pop up as Figure

5-2.

 Figure 5-2 Operation Screen

The top of the operation screen consists of a function menu and a tool bar for user’s commonly

operating functions.

Function Menu

Item File contents “Exit” Function, using to exit this Utility program.

Item Tool contents functions as below:

Add Remote Ethernet Device�Create a new ADAM-6000 module or ADAM-5000/TCP located in other

Ethernet domination, both available to local LAN and Internet

application.

Search for Ethernet Device�Search all ADAM-6000 and ADAM-5000/TCP units in the specific Ethernet

domination. (The same with host PC’s Ethernet domination)

Refresh a Ethernet Device�Refresh the specific ADAM-6000 or ADAM-5000/TCP unit to verify the

system status.

Terminal�Call up the operation screen of Terminal emulation to do the request / response command

execution.

Item Setup contents Timeout and Scan Rate setting functions. Please be aware of the time setting for

other Ethernet domination usually longer than local network.

Item Help contents on-line help function as user’s operation guide; the item About contents

information about software version, released date, and support modules.

Tool Bar

There are five push buttons in the tool bar.

 Figure 5-3 Tool Bar

5-3-2 Network Setting
As the moment you start up this Windows Utility, it will search all ADAM-6000 I/O modules and

ADAM-5000/TCP on the host PC’s domination Ethernet network automatically. Then the tree-structure

display area will appeal with the searched units and the relative IP address.

 Figure 5-4 Network Setting

See Figure 5-4, there are also Host PC’s information in the status display area, include host name and

IP address. Moreover, the Windows Utility provides network connection test tool for user to verify

whether the communication is workable. Key-in the specific IP address you want to connect and click

the PING button, the testing result will show as Figure 5-5.

 Figure 5-5 Communication testing function

Since Utility software detects the ADAM-6000 and 5000/TCP on the network, user can begin to setup

each unit with following steps.

Step1. Choose any one station, all I/O modules plugged in the main unit will be listed on the

tree-structure display area. Mean while, the “Device Name” and “Device Description” are

editable by operator’s needs.

 Figure 5-6 Define Device Name and Description

Step2. Click the Network Tab to configure the TCP/IP network setting

 Figure 5-7 TCP/IP Network setting

MAC Address�This is also called Ethernet address and needs no further configuration.

Link Speed�This function will show the current linking speed to be either 10Mbps or 100Mbps. However,

the utility will auto-detect the current transmission speed on the network segment and set

the transmission speed for the device accordingly without your further efforts.

Duplex Mode�The utility will detect the current transmission mode (half-duplex or full-duplex) on the

network segment, and set the transmission mode for the device accordingly without your

further efforts.

IP Address, Subnet Mask, Default Gateway�

The IP address identifies your ADAM-6000 and ADAM-5000/TCP devices on the global network. Each

ADAM-6000 and ADAM-5000/TCP has same default IP address 10.0.0.1. Therefore, please do not initial

many ADAM-6000 and ADAM-5000/TCP at the same time to avoid the Ethernet collision.

If you want to configure the ADAM-6000 and ADAM-5000/TCP in the host PC’s dominating network,

only the IP address and Subnet Mask will need to set (The host PC and ADAM Ethernet I/O must belong

to same subnet Mask).

If you want to configure the ADAM-6000 and ADAM-5000/TCP via Internet or other network domination,

you have to ask your network administrator to obtain a specific IP and Gateway addresses, then

configure each ADAM-6000 and ADAM-5000/TCP with the individual setting.

5-3-3 Add Remote Stations
To meet the remote monitoring and maintenance requirements, The ADAM-6000 and ADAM-5000/TCP

System does not only available to operate in local LAN, but also allowed to access from Internet or

Intranet. Thus users would able to configure an ADAM-6000 and ADAM-5000/TCP easily no matter how

far it is.

Select item Tool\Add Remote Ethernet I/O in function menu or click the button, the adding station

screen will pop up as Figure 5-8. Then key-in the specific IP address and click the Add button. If the

communication success, the added ADAM Ethernet I/O unit should appeal on the tree-structure display

area.

 Figure 5-8 Adding ADAM Ethernet I/O Screen

Note� There are several conditions need to be sure before adding a remote ADAM-6000 or

ADAM-5000/TCP system in the windows Utility.

1. Be sure the specific IP is existed and available.

2. Be sure to complete the network linkage for both sides.

3. Be sure to adjust the best timing of timeout setting.

4. Even you are not sure whether the communication is workable or not, there is also a “PING”

function for testing the network connection.

5-3-4 I/O Module Configurations

Digital Input Output Module
Selecting ADAM-6000 Digital Modules includes ADAM-6050/605/6060, user can read following

information from the Utility.

 Figure 5-9 Digital I/O Module Configuration

Location�Standard Modbus address. ADAM Ethernet I/O Utility shows the Modbus mapping address of

each I/O channel. (Please refer to chapter 4 to see the address mapping for I/O Modules)

And the addresses will be the indexes for applying into the database of HMI or OPC Server.

Type�Data Type of the I/O channel. The data type of Digital I/O modules is always “Bit”.

Value�The current status on each channel of I/O Module. The value of digital I/O modules could be “0”

(OFF) or “1” (ON).

Description�Describes the channel numbers and I/O types of the specific module.

In addition to monitor the current DI/DO status, the Windows Utility offers a graphical operating interface

as figure 5-10. You can read the Digital input status through the change of the indicator icons.

Oppositely, you can write the digital output status through clicking the indicator icons.

 Figure 5-10 Operating and Indicating Icons

Note�1 The indicator icons are only available to click for digital output channel.

2 The hexadecimal code will be calculated automatically for any status.

With intelligent design concept, the digital input channels support counter and signal latch functions.

Click the specific channel, there will be four working modes for choosing.

 Figure 5-11 General Digital Input Mode

 Figure 5-12 Counter Input Mode

 Figure 5-13 Latch Input Mode

Note:

1) The new working mode setting will take effective after click the “Update” button.

2) If necessary, users could invert the original single for flexible operation needs.

The digital output channels support pulse output and delay output functions. Click the
specific channel, there will be four working modes for choosing.

 Figure 5-14 Pulse Output Mode Setting

 Figure 5-15 Delay Output Mode Setting

Analog Input Module
Selecting ADAM-6000 Analog Input Modules includes ADAM-6017, users can read following information

from the Utility.

 Figure 5-16 Current Analog Input Status

Location�Standard Modbus address. (Refer to Assigning address for I/O module in Chapter 4)

Type�Data type of the I/O channel. The data type of analog Input modules is always “word”.

Value�The current status on each channel of I/O modules. Windows Utility provides both decimal and

hexadecimal values used for different applications.

Description�Describes the channel numbers, sensor types, and measurement range of the specified

module.

Before acquiring the current data of an analog input module, you have to select the input range and

integration time. Then the input data will be scaled as the specified range with engineer unit.

 Figure 5-17 setting range and integration time

Note�Windows Utility allows user to Enable / Disable the current status display.

To provide users more valuable information, the ADAM-6000 analog modules have designed with

calculation functions, includes Maximum, Minimum, and Average values of individual channels. Click the

Maximum value tab, you will see the historical maximum values in each channel unless to press the

against “Reset” buttons.

 Figure 5-18 Maximum Value Recording

Click the Minimum value tab, you will see the historical minimum values in each channel unless to press

the against “Reset” buttons.

 Figure 5-19 Minimum Value Recording

Moreover, all of the analog channels are allowed to configure the High/Low limitation for alarm trigger

function. Once the value of the specific channel over or under the limitation, the alarm status could

trigger a digital output channel in the ADM-6017.

 Figure 5-20 Alarm Setting

5-3-5 I/O Module Calibrations
Calibration is to adjust the accuracy of ADAM module. There are several modes for module’s calibration:

Zero calibration, Span calibration, CJC calibration, and Analog Output calibration. Only analog input and

output modules can be calibrated, and the ADAM-6017 is the first released analog module.

Zero Calibration
1. Apply power to the module and let it warm up for 30 minutes.

2. Make sure the module is correctly installed and properly configured for the input range you want to

calibrate.

3. Use a precision voltage source to apply a calibration voltage to the V+ and V- terminals of the

ADAM-6017 module.

4. Click the Execute button.

 Figure 5-21 Zero Calibration

Span Calibration
Follow the same procedure of zero calibration and click the Execute button.

 Figure 5-22 Span Calibration

5-3-6 Security Setting
Though the technology of Ethernet discovered with great benefits in speed and integration, there also

exist risk about network invading form anywhere. For the reason, the security protection design has

built-in ADAM-6000 I/O modules. Once user setting the password into the ADAM-6000 firmware, the

important system configurations (Network, Firmware, Password) are only allowed to be changed by

password verification.

 Figure 5-23 Password Setting

Note: The default password of ADAM-6000 is “00000000”. Please make sure to keep the correct

password by yourself. If you lose it, please contact to Advantech’s technical support center for

help.

5-3-7 Terminal Emulations
You can issue commands and receive response by clicking the Terminal button on the tool bar. There

are two kinds of command format supported by this emulating function. Users can choose ASCII or

Hexadecimal mode as their communication base. If the ASCII mode has been selected, the Windows

Utility will translate the request and response string both in Modbus and ASCII format. Please refer

Chapter 6-2 to use Modbus Command; and refer Chapter 6-4 to apply ASCII command.

For example, select ASCII mode and key-in the ASCII command “$01M” (read module name), then click

Send. The response will show as figure 5-24.

 Figure 5-24 Command Emulation

5-3-8 Data Stream

Data Stream Configuration
In addition to TCP/IP communication protocol, ADAM-6000 supports UDP communication protocol to

regularly broadcast data to specific host PCs.

Click the tab of Data Stream, then configure the broadcasting interval and the specific IP addresses

which need to receive data from the specific ADAM-6000 I/O module. This UDP Data Stream function

broadcasts up to 8 host PCs simultaneously, and the interval is user-defined from 50ms to 7 Days.

 Figure 5-25 Data Stream Configuration

Data Stream Monitoring
After finishing the configuration of Data Stream, you can select the item “Monitor Data Stream” in the

function bar or click icon to call up operation display as Figure 5-26.

 Figure 5-26 Data Stream Monitoring

Select the IP address of the ADAM-6000 you want to read data, then click “Start ” button. The Utility

software will begin to receive the stream data on this operation display.

5-3-9 Firmware and Web Page Update
ADAM-6000 I/O modules are available to remote download firmware for customization web pages or

new functions upgrade. Select the Firmware Upgrade tab and click the “Browsing” button to find the

specific firmware (*.bin) for upgrade.

 Figure 5-27 Firmware Upgrade

Click the upgrade button, then the new firmware will be downloaded into the specific ADAM-6000

module.

Instructions to Java Applet Customization
Introduction
In this section, we will tell you the way to create an applet web page to monitor the status of ADAM-6060

through the Web browser. To write an input processing applet, you need to know how to define a class

with multiple methods. To understand how an applet processes input data, you must learn what events

are and how events are handled in Java programs. We don’t intend to teach you how to write the applet

because it is beyond the scope of our discussion here. Instead, we will provide you with a

small-but-useful example as well as the relevant class, methods and suggested template. We refer the

interested user who is intended to know more details to the following web site

http://java.sun.com/docs/books/tutorial/.

To write an applet that is capable of processing ADAM-6060 input data in a very short time, we provide

you with a class which includes all necessary methods. The kernel functions/methods to communicate

with our product and display the current, updated status has been fine-tuned for any signal it can process.

Four major methods are developed for the purpose, listed in table 1.

Table 1. Useful Methods to Communicate ADAM-6000 I/O Series Modules for

Digital I/O and Analog I/O

♦ boolean ForceCoil(int CoilAddr, boolean IsTrunOn)

This method is used for digital output of module channels. The parameter CoilAddr

is integer data type and the coil address of the channel. IsTrueOn is the parameter

used to indicate ON or OFF. If the method is successful, it will return true.

♦ boolean ReadCoil(int StartingAddr, int NoOfPoint, byte ModBusRTU[])

This method is used for digital input of module channels. The parameter

StartingAddr is the starting address of desired channel. NoOfPoint is to indicate

how many desired channels to be monitored. Both of the parameters are of integer

data type. The third parameter, ModBusRTU is an array with data type of byte,

which is used to carry digital inputs of the desired channels. The default size is 128.

♦ boolean ReadRegister(int StartingAddr, int NoOfPoint, byte ModBusRTU[])
This method is used for analog input of module channels. The parameter

StartingAddr is the starting address of desired channel. NoOfPoint is to indicate

how many desired channels to be monitored. Both of the parameters are of integer

data type. The third parameter, ModBusRTU is an array with data type of byte,

which is used to carry analog inputs of the desired channels. The default size is

128.

http://java.sun.com/docs/books/tutorial/

Employing these four methods, you can customize your applet and focus solely on the user interface you

intend to create and the number of channels you want to monitor.

An Example
To process ADAM-6060 input and display the result/status on an applet, we will use objects from the

standard java class library and the class we develop. Specifically, we provide Modbus class to handle the

communication with ADAM-6000 I/O modules. Now we’re going to teach you step by step how to

customize your Web page.

Java Applet Programming
To create your own Web page, you have to follow some rules. There are two parts in this section. We

start from the HTML file. Please refer to table 2 below for the default HTML source code.

<HTML>
<HEAD>
<TITLE>
ADAM-6000 Ethernet-Enabled DA&C Modules
</TITLE>
</HEAD>
<BODY>
<APPLET
 CODEBASE = "."
 CODE = "Adam6060.class"
 ARCHIVE = "Adam6060.jar"
 NAME = "Adam6060 Relay Module"
 WIDTH = 500
 HEIGHT = 400
 HSPACE = 0
 VSPACE = 0
 ALIGN = middle
>
<PARAM NAME = "HostIP" VALUE = "010.000.000.000">
</APPLET>
</BODY>
</HTML>

Table 2. Overview of index.html

Firstly, the HTML file must be named “index.html.” The name of parameter in <APPLET…> cannot

change. The lines “CODE = "Adam6060.class"” and “ARCHIVE = "Adam6060.jar"” indicate where the

class and jar files (your Java Applet program) are for ADAM-6060 module. WIDTH and HEIGHT are

parameters to set the visible screen size of your Java Applet Web page. The HTML is a good template for

you to create your own embedded Web page; however, the parameter names and most of their values

cannot be modified, or it will not work. You can only change the value of WIDTH and HEIGHT parameters,

e.g. WIDTH = 640 and HEIGHT = 480. However, you must change the value of CODE and ARCHIVE

when you try to write it for another module, say ADAM-6017, and thus you should use “Adam6017.class”

and “Adam6017.jar” instead of “Adam6060.class” and “Adam6060.jar.”

Some Instructions When Writing Java Applet for ADAM-6000 I/O Series
To enable your java applet to communicate with ADAM-6000 I/O modules, you have to include the

following code in the very beginning of your program:

import Adam.ModBus.*;

In constructor it is suggested to add the following fragment in your exception handler:

Try {

HostIP = getParameter("HostIP");

Adam6060Connection = new ModBus(HostIP);

if (HostIP == "")

labAdamStatusForDIO.setText("Get Host IP is null !!");

else

labAdamStatusForDIO.setText("Get Host IP :" +

Adam6060Connection.GetHostIP() + " Ver 1.00");

………………

}

The fragment is used to obtain the host IP value and check if it is null. To acquire the necessary

parameter information from the index.html, you need to add the fragment below.

As for mouse/keyboard events and graphical user interface, they are beyond the scope of our discussion

here and we will leave them to users.

After you finish your program and compile, it should generate a couple of classes, e.g. ADAM6060.class,

ADAM6060$1.class, ADAM6060$2, and myFramPanel.class in our example. Then, follow the standard

way to combine the generated classes with ModBus.class which must be placed in the directory path

“Adam/ModBus/” into a jar file. In this case, the name for the file should be ADAM6060.jar. The figure

below shows the structure to make the jar file.

 Figure 5-28 The structure of ADAM6060.jar file

Start your ADAM utility, and open the tab “Firmware/Web” as shown below. Then, tell the utility where the

path is for the JAR and HTML files. In this case, they are ADAM-6060.jar and index.html. Push

 button, and a confirmation window pops up. After you confirm, it will start processing.

public String[][] getParameterInfo() {

String[][] pinfo =

{

{"HostIP", "String", ""},

};

return pinfo;

}

Figure 5-29 Firmware Upgrade for ADAM-6000 I/O Series Modules

Appendix A
Source Code of Java Applet Example
import Adam.ModBus.*;

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.io.*;

import java.lang.*;

public class Adam6060 extends Applet {

boolean isStandalone = false;

String var0;

Thread AdamPoilThread;

String HostIP;

long ErrCnt = 0;

boolean IsAdamRuning = false;

ModBus Adam6060Connection;

Label Label1 = new Label();

myFramPanel palStatus = new myFramPanel(2);

myFramPanel pal1 = new myFramPanel(3);

myFramPanel pal2 = new myFramPanel(3);

myFramPanel palAdamStatus = new myFramPanel(1);

Label labStartAddress = new Label("Start Address:");

TextField txtStartAddress = new TextField("1");

Label labCount = new Label("No. of coils to read(Max 128):");

TextField txtCount = new TextField("1");

Button btAdam6060 = new Button("Read Coils");

TextArea txtMsg = new TextArea("", 1, 10, 1);

Label labAdamStatusForDIO = new Label("Status : ");

/**Get a parameter value*/

public String getParameter(String key, String def) {

return isStandalone ? System.getProperty(key, def) :

(getParameter(key) != null ? getParameter(key) : def);

}

/**Constructor*/

public Adam6060() {

}

/**Applet Initialization*/

public void init() {

try {

HostIP = getParameter("HostIP");

Adam6060Connection = new ModBus(HostIP); //create ADAM-6060

module object

if (HostIP == "") //check the Host IP

labAdamStatusForDIO.setText("Get Host IP is null !!");

else

labAdamStatusForDIO.setText("Get Host IP :" +

Adam6060Connection.GetHostIP() + " Ver 1.00");

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

/**Component initialization and displayed screen*/

private void jbInit() throws Exception {

this.setLayout(null);

palStatus.setBackground(Color.lightGray);

palAdamStatus.setBackground(Color.lightGray);

palStatus.setBounds(new Rectangle(42, 50, 409, 15 *2 + 0 * 2 + 77 +

152 + 33));

pal1.setBounds(new Rectangle(12, 15 , 385, 77));

pal2.setBounds(new Rectangle(12, 15 + 77 + 0 , 385, 152));

palAdamStatus.setBounds(new Rectangle(12, 15 + 77 + 0 * 2 + 152, 385,

33));

palStatus.setLayout(null);

pal1.setLayout(null);

pal1.add(labStartAddress, null);

pal1.add(txtStartAddress, null);

pal1.add(labCount, null);

pal1.add(txtCount, null);

pal1.add(btAdam6060, null);

labStartAddress.setBounds(new Rectangle(20, 15, 85, 20));

txtStartAddress.setBounds(new Rectangle(205, 15, 60, 20));

labCount.setBounds(new Rectangle(20, 40, 180, 20));

txtCount.setBounds(new Rectangle(205, 40, 60, 20));

btAdam6060.setBounds(new Rectangle(275, 40, 80, 22));

btAdam6060.addMouseListener(new java.awt.event.MouseAdapter() {

public void mousePressed(MouseEvent e) { //mouse event handling

int i, j;

long lAddress, lCount;

byte ModBusRTU[] = new byte[128];

if

(Adam6060Connection.ReadCoil((int)Long.parseLong(txtStartAddress.getT

ext()), (int)Long.parseLong(txtCount.getText()), ModBusRTU))

{

lAddress = Long.parseLong(txtStartAddress.getText());

for(i = 0; i < Long.parseLong(txtCount.getText()); i++)

{

txtMsg.append("Address:" + String.valueOf(lAddress) +

" -> " + String.valueOf((int)ModBusRTU[i]) + "\n");

lAddress++;

}

}

else

{

try

{

Adam6060Connection = new ModBus(HostIP);

}

catch(Exception eNet) { eNet.printStackTrace(); }

}

}

});

palAdamStatus.setLayout(null);

pal2.setLayout(null);

pal2.add(txtMsg, null);

txtMsg.setBounds(new Rectangle(15, 15, 355, 120));

Label1.setFont(new java.awt.Font("DialogInput", 3, 26));

Label1.setForeground(Color.blue);

Label1.setText("ADAM-6060 DIO Module");

Label1.setBounds(new Rectangle(83, 17, 326, 29));

this.add(Label1, null);

this.add(palStatus, null);

palStatus.add(pal1, null);

palStatus.add(pal2, null);

palStatus.add(palAdamStatus, null);

labAdamStatusForDIO.setBounds(new Rectangle(10, 8, 350, 12));

palAdamStatus.add(labAdamStatusForDIO, null);

}

/**Applet Information Acquisition*/

public String getAppletInfo() {

return "Applet Information";

}

/**Get parameter info*/

public String[][] getParameterInfo() {

String[][] pinfo =

{

{"HostIP", "String", ""},

};

return pinfo;

}

/**Main method: for the purpose of laying out the screen in local PC*/

public static void main(String[] args) {

Adam6060 applet = new Adam6060();

applet.isStandalone = true;

Frame frame;

frame = new Frame() {

protected void processWindowEvent(WindowEvent e) {

super.processWindowEvent(e);

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

System.exit(0);

}

}

public synchronized void setTitle(String title) {

super.setTitle(title);

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

}

};

frame.setTitle("Applet Frame");

frame.add(applet, BorderLayout.CENTER);

applet.init();

applet.start();

frame.setSize(500,620);

Dimension d = Toolkit.getDefaultToolkit().getScreenSize();

frame.setLocation((d.width - frame.getSize().width) / 2, (d.height

- frame.getSize().height) / 2);

frame.setVisible(true);

}

}

/**Displayed Screen*/

class myFramPanel extends Panel

{

int panelType;

Label labMassage = new Label("");

public myFramPanel() {

//super();

}

public myFramPanel(int myType) {

//super();

panelType = myType;

}

public myFramPanel(int myType, String Msg, int msgTextLength) {

//super();

panelType = myType;

if (Msg != "") {

labMassage.setText(Msg);

this.setLayout(null);

labMassage.setBounds(new Rectangle(20, 3, msgTextLength,

15));

this.add(labMassage);

}

}

public void paint(Graphics g) {

Dimension size = getSize();

if (panelType == 1) {

int off;

off = 4;

g.setColor(Color.white);

g.drawRect(0, 0, size.width - 1, size.height - 1);

g.setColor(Color.darkGray);

g.drawLine(size.width - 1, 0, size.width - 1, size.height -

1);

g.drawLine(0, size.height - 1, size.width - 1, size.height

- 1);g.setColor(Color.black);

g.setColor(Color.black);

g.drawRect(off, off, size.width - 2 - off * 2, size.height

- 2 - off * 2);

}

else if (panelType == 2) {

g.setColor(Color.white);

g.drawRect(0, 0, size.width - 1, size.height - 1);

g.drawLine(size.width - 4, 2, size.width - 4, size.height -

4);

g.drawLine(2, size.height - 4, size.width - 4, size.height

- 4);

g.setColor(Color.darkGray);

g.drawLine(2, 2, size.width - 4, 2);

g.drawLine(2, 2, 2, size.height - 4);

g.drawLine(size.width - 1, 0, size.width - 1, size.height -

1);

g.drawLine(0, size.height - 1, size.width - 1, size.height

- 1);g.setColor(Color.black);

}

else if (panelType == 3) {

int off;

off = 4;

g.setColor(Color.white);

g.drawRect(0, 0, size.width - 1, size.height - 1);

g.setColor(Color.darkGray);

g.drawLine(size.width - 1, 0, size.width - 1, size.height -

1);

g.drawLine(0, size.height - 1, size.width - 1, size.height

- 1);

g.setColor(Color.black);

g.drawRect(off, off + 5, size.width - 2 - off * 2, size.height

- 2 - off * 2 -5);

}

else {

g.setColor(Color.darkGray);

g.drawRect(0, 0, size.width - 1, size.height - 1);

}

}

};

Snapshot of the Running Applet

 Chapter 6

 Planning Your Application Program

 Using this Chapter

If you want to read about Go to page

DLL Driver 6-2

Command Structure 6-23

Modbus Function Code Introduction 6-24

Apply with ASCII Command 6-29

- System Command Set 6-35

- Analog Input Command Set 6-39

- Analog Input Alarm Command Set 6-56

- Digital I/O Command Set 6-66

6-1 Introduction
After completing the system configuration, you can begin to plan the application program. This chapter

introduces two programming tools for users to execute system data acquisition and control. The DLL

drivers and command sets provide a friendly interface between your applications and ADAM-6000 I/O

modules.

6-2 DLL (Dynamic Link Library) Driver
The Dynamic Link Library (DLL) enables you to quickly and easily to write Windows applications for

ADAM-6000 modules. The library supports Borland C, Delphi, Visual C++, and Visual Basic. Since

ADAM-6000 modules communicate with a host computer through Ethernet, no additional driver needs to

be installed. The DLL includes all necessary function calls to utilize the ADAM-6000 modules to their

fullest extent.

In the same path with “ADAM Ethernet I/O”, you‘ll find the relational example files for each kind of

programming languages after setup the Windows Utility program. You can customize the source code to

create your own tailor-made ADAM-6000 setup program or monitoring system.

6-2-1 Index
There are eight function libraries common used by ADAM-6000 and ADAM-5000/TCP list as follow:

ADAMTCP_Connect

ADAMTCP_Disconnection

ADAMTCP_GetDLLVersion

ADAMTCP_ReadReg

ADAMTCP_WriteReg

ADAMTCP_ReadCoil

ADAMTCP_WriteCoil

ADAMTCP_SendReceive5KTCPCmd

In addition, Advantech offers more function libraries especially for various ADAM-6000 applications.
ADAMTCP_SendReceive6KTCPCmd

ADAMTCP_Read6KDIO

ADAMTCP_Write6KDO

ADAMTCP_Read6KAI

ADAMTCP_Read6KDIOMode

ADAMTCP_Write6KDIOMode

ADAMTCP_Read6KSignalWidth

ADAMTCP_Write6KsignalWidth

ADAMTCP_Read6KCounter

ADAMTCP_Clear6KCounter

ADAMTCP_Start6KCounter

ADAMTCP_Stop6KCounter

ADAMTCP_Clear6KDILatch

6-2-2 Function Descriptions

ADAMTCP_Connect
Description:

Establish a Windows Sockets connection in a specified ADAM-6000 I/O module.

Syntax:

int ADAMTCP_Connect(int socket_type, char *szIP, unsigned short port, SOCKET *conn_socket,

 int iConnectionTimeout, int iSendTimeout, int iReceiveTimeout);

Parameter:

socket_type[in]: to specify the connection type that is UDP or TCP.

szIP[in]: the IP address for ADAM-6000 that to be connected.

port[in]: the connection port

conn_socket[out]: the handle that represent a socket

iConnectionTimeout[in]: the specified timeout interval for connecting to the ADAM-6000

iSendTimeout[in]: the specified timeout interval for sending a command to the ADAM-6000

iReceiveTimeout[in]: the specified timeout interval for receiving response from the ADAM-6000

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

ADAMTCP_Disconnect
Description:

Disconnect the Windows Sockets connection of the specified ADAM-6000 I/O module.

Syntax:

void ADAMTCP_Disconnect(void);

Parameter:

void

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

ADAMTCP_GetDLLVersion
Description:

Read the version of ADAM-6000 DLL driver

Syntax:

int ADAMTCP_GetDLLVersion(void);

Parameter:

void

Return:

0x100 -> Version 1.10

ADAMTCP_ReadReg
Description:

Read the holding register value at a specified range described in parameters.

Syntax:

int ADAMTCP_ReadReg(SOCKET conn_socket, WORD wStartAddress, WORD wCount, WORD

wData[])

Parameter:

conn_socket[in]: the handle that represent the connection socket

wStartAddress[in]: the starting address that to be read

wCount[in]: how many holdings register to be read

wData[out]: a unsigned 16 bits array that stored the read holding register

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

Example:

// Read input registers demo program

//--- In this demo program, reading 16 register starting at register 0(address 1)

//--- The IP address for ADAM-6000 module is 172.16.2.200 in this demo program.

//--- Change the IP Address to match your ADAM-6000 module

#include <windows.h>

#include <winsock2.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "adv5ktcp.h"

#define DEFAULT_PORT 502

//-------- default timeout -----

int iConnectionTimeout=2000;

int iSendTimeout=2000;

int iReceiveTimeout=2000;

int main(int argc, char **argv)

{

 int i,j;

 SOCKET conn_socket;

 int iRetVal,iVersion;

 WORD wStartAddress=1;

 WORD wCount=16;

 WORD wData[16];

 char line[80];

 printf("In this demo, the IP Address of 6000 module is assumed as 172.16.2.200\n");

 printf("Please make sure the IP Address for your 6000 module is 172.16.2.200 (Y/N)? ");

 gets(line);

 if(toupper(line[0])!='Y')

 return 0;

 for(i=0; i<wCount; i++)

 wData[i]=0xffff;

 iVersion=ADAMTCP_GetDLLVersion();

 printf("The Version=%04x\n",iVersion);

 //--- Firstly, try to create a connection to ADAM-6000 ---

 //--- Please change the following IP address to match your ADAM-6000 module ---

 iRetVal=ADAMTCP_Connect(SOCK_STREAM,"172.16.2.200",502,&conn_socket,

 iConnectionTimeout, iSendTimeout, iReceiveTimeout);

 if(iRetVal<0)

 {

 printf("Connect Failure !!! code=%d\n",iRetVal);

 exit(0);

 }

 //--- reading input register ---

 iRetVal=ADAMTCP_ReadReg(conn_socket, wStartAddress, wCount,wData);

 if(iRetVal)

 {

 printf("ADAMTCP_ReadReg() Fail !!! code=%d\n",iRetVal);

 ADAMTCP_Disconnect();

 exit(0);

 }

 for(i=0,j=wStartAddress; i<wCount; i++,j++)

 {

 printf("Addr:[%d] -> %04x\n",j,wData[i]);

 }

 printf("\n");

 //--- Lastly, disconnection to 6000 I/O Modules ---

 ADAMTCP_Disconnect();

 printf("ADAMTCP_Discennect() successful !\n");

}

ADAMTCP_WriteReg
Description:

Write the holding register value at a specified range described in parameters.

Syntax:

int ADAMTCP_WriteReg(SOCKET conn_socket, WORD wStartAddress, WORD wCount, WORD

wData[])

Parameter:

conn_socket[in]: the handle that represent the connection socket

wStartAddress[in]: the starting address that to be read

wCount[in]: how many holdings register to be read

wData[out]: a unsigned 16 bits array that stored the value write to holding value

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

ADAMTCP_ReadCoil
Description:

Read the coils value at a specified range described in parameters.

Syntax:

int ADAMTCP_ReadCoil(SOCKET conn_socket, WORD wStartAddress, WORD wCount, BYTE

byData[])

Parameter:

conn_socket[in]: the handle that represent the connection socket

wStartAddress[in]: the starting address that to be read

wCount[in]: how many coils to be read

byData[out]: a 8 bit array that stored the read coil

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

ADAMTCP_WriteCoil
Description:

Write the coils value at a specified range described in parameters.

Syntax:

int ADAMTCP_WriteCoil(SOCKET conn_socket, WORD wStartAddress, WORD wCount, BYTE

byData[])

Parameter:

conn_socket[in]: the handle that represent the connection socket

wStartAddress[in]: the starting address that to be read

wCount[in]: how many coils to be read

byData[out]: a 8-bit array that stored the read coil

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

ADAMTCP_SendReceive5KTCPCmd
Description:

This function is just for user's convenience, accepting the ASCII format string as a command. Then

transform it to meet the Modbus/TCP specification.

Syntax:

int ADAMTCP_SendReceive5KTCPCmd(SOCKET conn_socket, char szSendToTCP[], char

szReceiveFromTCP[], char szModbusSend[], char szModbusReceive[])

Parameter:

conn_socket[in]: the handle that represent the connection socket

szSendToTCP[in]: the ASCII format string that send to a ADAM-6000 module

szReceiveFromTCP[out]: the ASCII format string that response from a ADAM-6000 module

szModbusSend[out]: the Modbus/TCP format string that send to a ADAM-6000 module

szModbusReceive[out]: the Modbus/TCP format string that response from a ADAM-6000 module

Return:

Please refer to Chapter 6-2-3 “Return Codes” for more detail information

ADAMTCP_SendReceive6KTCPCmd
Description:

This function is specific for 6000 series. It accepts the command in ASCII format string. Then transform

it to follow the Modbus/TCP communication protocol.

Syntax:

int ADAMTCP_SendReceive6KTCPCmd(char szIP[], char szSendToTCP[], char szReceiveFromTCP[]

char szModbusSend[], char szModbusReceive[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

szSendToTCP[in]: the ASCII format string that send to the ADAM-6000.

szReceiveFromTCP[out]: the ASCII format string that response from the ADAM-6000.

szModbusSend[out]: the Modbus/TCP format string that send to the ADAM-6000.

szModbusReceive[out]: the Modbus/TCP format string that response from the ADAM-6000.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information

ADAMTCP_Read6KDIO
Description:

To read the DI/DO status in the specific ADAM-6000 module.

Syntax:

int ADAMTCP_Read6KDIO(char szIP[], WORD wModule, WORD wIDAddr, BYTE byDI[], BYTE byDO[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

byDI[out]: an 8-bit array that stored the DI status of the specific ADAM-6000.

byDO[out]: an 8-bit array that stored the DO status of the specific ADAM-6000.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Write6KDO
Description:

Set D/O status to an specific ADAM-6000 module.

Syntax:

int CALLBACK ADAMTCP_Write6KDO(char szIP[], WORD wModule, WORD wIDAddr, WORD

wStartDO, WORD wCount, BYTE byDO[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

wStartDO[in]: the starting channel to be written.

wCount[in]: the total channels to be written.

byDO[out]: an 8-bit array that stored the DO status of the specific ADAM-6000.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Read6KAI
Description:

To read analog input channel's value for an ADAM-6000 module.

Syntax:

int ADAMTCP_Read6KAI(char szIP[], WORD wModule, WORD wIDAddr, WORD wGain[], WORD

wHex[], double dlValue[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

wGain[in]: the range code against analog input range for individual channels stored in

this array.

wHex[out]: an unsigned 16-bit array that stored the value reading from AI channels.

dlValue[out]: an array that stored the values in engineer unit format that reading from AI

channels.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Read6KDIOMode
Description:

To read the working mode of each DI/O channels in a specific ADAM-6000 module.

Syntax:

int ADAMTCP_Read6KDIOMode(char szIP[], WORD wModule, WORD wIDAddr, BYTE byDIMode[],

BYTE byDOMode[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.
wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

byDIMode[out]: an 8-bit array that stored DI channels’ working modes which represent in

numeric format as follows:

0: this channel is in 'DI' mode

1: this channel is in 'Counter' mode

2: this channel is in 'Lo to Hi latch' mode

3: this channel is in 'Hi to Lo latch' mode

byDOMode[out]: an 8-bits array that stored DO channels’ working modes which represent in

numeric format as follows:

0: this channel is in 'DO' mode

1: this channel is in 'Pulse Output' mode

2: this channel is in 'Lo to Hi Delay' mode

3: this channel is in 'Hi to Lo Delay' mode

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Write6KDIOMode
Description:

To set the working modes for each DI/O channels in a specific ADAM-6000 module.

Syntax:

int ADAMTCP_Wirte6KDIOMode(char szIP[], WORD wModule, WORD wIDAddr, BYTE byDIMode[],

BYTE byDOMode[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

byDIMode[in]: an 8-bit array that stored DI channels’ working modes which represent in

numeric format as follows:

0: this channel is in 'DI' mode

1: this channel is in 'Counter' mode

2: this channel is in 'Lo to Hi latch' mode

3: this channel is in 'Hi to Lo latch' mode

byDOMode[in]: an 8-bit array that stored D/O channels’ working modes which represent in

numeric format as follows:

0: this channel is in 'DO' mode

1: this channel is in 'Pulse Output' mode

2: this channel is in 'Lo to Hi Delay' mode

3: this channel is in 'Hi to Lo Delay' mode

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Read6KSignalWidth
Description:

To read the minimal high/low signal width of each D/I channel in a specific ADAM-6000 module.

Syntax:

int ADAMTCP_Read6KSignalWidth(char szIP[], WORD wModule, WORD wIDAddr, unsigned long

ulLoWidth[], unsigned long ulHiWidth[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

ulLoWidth[out]: an unsigned 32-bit array that stored the minimal low signal width of each DI

channel. The unit is 0.1 msec.

ulHiWidth[out]: an unsigned 32-bit array that stored the minimal high signal width of each DI

channel. The unit is 0.1 msec.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Write6KSignalWidth
Description:

To set the minimal high/low signal width of each DI channel in a specific ADAM-6000 module.

Syntax:

int ADAMTCP_Write6KSignalWidth(char szIP[], WORD wModule, WORD wIDAddr, unsigned long

ulLoWidth[], unsigned long ulHiWidth[])

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

ulLoWidth[out]: an unsigned 32-bit array that stored the minimal low signal width of each DI

channel. The unit is 0.1 msec.

ulHiWidth[out]: an unsigned 32-bit array that stored the minimal high signal width of each DI

channel. The unit is 0.1 msec.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Read6KCounter
Description:

To read the counter value when a DI channel configured in 'Counter' mode.

Syntax:

int ADAMTCP_Read6KCounter(char szIP[], WORD wModule, WORD wIDAddr,

 unsigned long ulCounterValue[]);

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wModule[in]: the module name of the ADAM-6000 module to be connected.

(For example, 6050, 6051, or 6060)

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

ulCounterValue[out]: an unsigned 32-bit array that stored the counter value of each DI channel.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Clear6KCounter
Description:

To clear the counter value when a DI channel configured in 'Counter' mode.

Syntax:

int ADAMTCP_Clear6KCounter(char szIP[], WORD wIDAdd, WORD wChIndex, WORD wData)

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

wChIndex[in]: the specific DI channel need to be cleared the counter value.

wData[in]: always 1.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Start6KCounter
Description:

Start counting when a DI channel configured as 'Counter' mode.

Syntax:

int ADAMTCP_Start6KCounter(char szIP[], WORD wAddress, WORD wChIndex)

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

wChIndex[in]: the specific DI channel need to start or stop counting.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Stop6KCounter
Description:

Stop counting when a DI channel configured as 'Counter' mode.

Syntax:

int ADAMTCP_Stop6KCounter(char szIP[], WORD wAddress, WORD wChIndex)

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

wChIndex[in]: the specific DI channel need to start or stop counting.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

ADAMTCP_Clear6KDILatch
Description:

To clear the latch when a DI channel configured as 'Lo to Hi Latch' or 'Hi to Lo Latch'.

Syntax:

int ADAMTCP_Clear6KDILatch(char szIP[], WORD wIDAddr, WORD wChIndex)

Parameter:

szIP[in]: the IP Address of the target ADAM-6000 module to be connected.

wIDAddr[in]: the Modbus device ID for an ADAM-6000 module. (Always 1)

wChIndex[in]: the specific DI channel need to be cleared the latch status.

Return:

Please refer to Chapter 6-2-3 "Return Codes" for more detail information.

6-2-3 Return Codes
Using these function libraries, you can read the error message from the returning codes.

ADAM5KTCP_NoError (0)

ADAM5KTCP_StartupFailure (-1)

ADAM5KTCP_SocketFailure (-2)

ADAM5KTCP_UdpSocketFailure (-3)

ADAM5KTCP_SetTimeoutFailure (-4)

ADAM5KTCP_SendFailure (-5)

ADAM5KTCP_ReceiveFailure (-6)

ADAM5KTCP_ExceedMaxFailure (-7)

ADAM5KTCP_CreateWsaEventFailure (-8)

ADAM5KTCP_ReadStreamDataFailure (-9)

ADAM5KTCP_InvalidIP (-10)

ADAM5KTCP_ThisIPNotConnected (-11)

ADAM5KTCP_AlarmInfoEmpty (-12)

ADAM5KTCP_NotSupportModule (-13)

ADAM5KTCP_ExceedDONo (-14)

ADAM5KTCP_InvalidRange (-15)

6-3 ADAM-6000 Commands
ADAM-6000 and ADAM-5000/TCP system accept a command/response form with the host computer.

When systems are not transmitting they are in listen mode. The host issues a command to a system

with a specified address and waits a certain amount of time for the system to respond. If no response

arrives, a time-out aborts the sequence and returns control to the host. This chapter explains the

structure of the commands with Modbus/TCP protocol, and guides to use these command sets to

implement user’s programs.

6-3-1 Command Structure
It is important to understand the encapsulation of a Modbus request or response carried on the

Modbus/TCP network. A complete command is consisted of command head and command body. The

command head is prefixed by six bytes and responded to pack Modbus format; the command body

defines target device and requested action. Following example will help you to realize this structure

quickly.

Example:

If you want to read the first two values of ADAM-6017 (address: 40001~40002), the request command

should be:

 Figure 6-1 Request Comment Structure

And the response should be:

 Figure 6-2 Response Comment Structure

6-3-2 Modbus Function Code Introductions
To full-fill the programming requirement, there is a series of function code standard for user’s

reference…

Code (Hex) Name Usage
01 Read Coil Status Read Discrete Output Bit
02 Read Input Status Read Discrete Input Bit
03 Read Holding Registers
04 Read Input Registers

Read 16-bit register. Used to read integer
or floating point process data.

05 Force Single Coil Write data to force coil ON/OFF
06 Preset Single Register Write data in 16-bit integer format
08 Loopback Diagnosis Diagnostic testing of the communication port
15 Force Multiple Coils Write multiple data to force coil ON/OFF
16 Preset Multiple Registers Write multiple data in 16-bit integer format
 Table 6-1 Response Comment Structure

Function Code 01
The function code 01 is used to read the discrete output’s ON/OFF status of ADAM-6000 modules in a

binary data format.

Request message format for function code 01:

Command Body
 Station
Address

Function
 Code

Start Address
 High Byte

Start Address
 Low Byte

Requested Number
of Coil High Byte

Requested Number
of Coil Low Byte

Example: Read coil number 1 to 8 (address number 00017 to 00024) from ADAM-6000 Modules

 01 01 00 17 00 08

Response message format for function code 01:

Command Body
 Station
Address

Function
 Code

 Byte
Count

Data Data …

Example: Coils number 2 and 7 are on, all others are off.

 01 01 01 42

 In the response the status of coils 1 to 8 is shown as the byte value 42 hex, equal to 0100 0010

binary.

Function Code 02
The function code 02 is used to read the discrete input’s ON/OFF status of ADAM-6000 in a binary data

format.

Request message format for function code 02:

Command Body
 Station
Address

Function
Code

Start Address
High Byte

Start Address
Low Byte

Requested Number
of Input High Byte

Requested Number
of Input Low Byte

Example: Read coil number 1 to 8 (address number 00001 to 00008) from ADAM-6000 modules

 01 01 00 01 00 08

Response message format for function code 02:

Command Body
 Station
Address

Function
 Code

 Byte
Count

Data Data …

Example: input number 2 and 3 are on, all others are off.

 01 01 01 60

 In the response the status of input 1 to 8 is shown as the byte value 60 hex, equal to 0110 0000

binary.

Function Code 03/04
The function code 03 or 04 is used to read the binary contents of input registers

Request message format for function code 03 or 04:

Command Body
 Station
Address

Function
Code

Start Address
High Byte

Start Address
Low Byte

Requested Number
of Register High Byte

Requested Number
of Register Low Byte

Example: Read Analog inputs #1 and #2 in addresses 40001 to 40002 as floating point value from

ADAM-6017 module

 01 04 00 01 00 02

Response message format for function code 03 or 04:

Command Body
 Station
Address

Function
 Code

Byte
Count

Data Data …

Example: Analog input #1 and #2 as floating point values where AI#1=100.0 and AI#2=55.32

 01 04 08 42 C8 00 00 47 AE 42 5D

Function Code 05
Force a single coil to either ON or OFF. The requested ON/OFF state is specified by a constant in the

query data field. A value of FF 00 hex requests it to be ON. A value of 00 00 hex requests it to be OFF.

And a value of FF FF hex requests it to release the force.

Request message format for function code 05:

Command Body
Station
Address

Function
Code

Coil Address
 High Byte

Coil Address
 Low Byte

Force Data
High Byte

Force Data
Low Byte

Example: Force coil 3 (address 00003) ON in ADAM-6000 module

 01 05 00 03 FF 00

Response message format for function code 05:

The normal response is an echo of the query, returned after the coil state has been forced.

Command Body
Station
Address

Function
Code

Coil Address
 High Byte

Coil Address
 Low Byte

Force Data
High Byte

Force Data
Low Byte

Function Code 06
Presets integer value into a single register.
Request message format for function code 06:

Command Body
Station
Address

Function
Code

Register Address
High Byte

Register Address
Low Byte

Preset Data
High Byte

Preset Data
Low Byte

Example: Preset register 40002 to 00 04 hex in ADAM-6000 module

 01 06 00 02 00 04

Response message format for function code 06:

The normal response is an echo of the query, returned after the coil state has been preset.

Command Body
Station
Address

Function
Code

Register Address
High Byte

Register Address
Low Byte

Preset Data
High Byte

Preset Data
Low Byte

Function Code 08
Echoes received query message. Message can be any length up to half the length of the data buffer

minus 8 bytes.

Request message format for function code 08:

Command Body
Station
Address

Function
Code

Any data, length limited to approximately half the
length of the data buffer

Example: 01 08 00 02 00 04

Response message format for function code 08:

Command Body
Station
Address

Function
Code

Data bytes received

Example: 01 08 00 02 00 04

Function Code 15 (0F hex)
Forces each coil in a sequence of coils to either ON or OFF.

Request message format for function code 15:

Command Body
 Station
Address

Function
 Code

Start Address
 High Byte

Start Address
 Low Byte

Requested Number
of Coil High Byte

Requested Number
of Coil Low Byte

 Byte
Count

Force Data
High Byte

Force Data
Low Byte

Example: Request to force a series of 10 coils starting at address 00017 (11 hex) in ADAM-6000

module.

 01 0F 00 11 00 0A 02 CD 01

 The query data contents are two bytes: CD 01 hex, equal to 1100 1101 0000 0001 binary. The

binary bits are mapped to the addresses in the following way.

 Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

 Address (000XX): 24 23 22 21 20 19 18 17 - - - - - - 26 25

Response message format for function code 08:

The normal responses return the station address, function code, start address, and requested number of

coil forced.

Command Body
 Station
Address

Function
 Code

Start Address
 High Byte

Start Address
 Low Byte

Requested Number
of Coil High Byte

Requested Number
of Coil Low Byte

Example: 01 0F 00 11 00 0A

Function Code 16 (10 hex)
Preset values into a sequence of holding registers.

Request message format for function code 16:

Command Body
 Station
Address

Function
 Code

Start Address
 High Byte

Start Address
 Low Byte

Requested Number
of Register High Byte

Requested Number
of Register Low Byte

 Byte
Count

Data

Example: Preset constant #1 (address 40009) to 100.0 in ADAM-6000 module.

 01 10 00 09 00 02 04 42 C8 00 00

Response message format for function code 08:

The normal responses return the station address, function code, start address, and requested number of

registers preset.

Command Body
 Station
Address

Function
 Code

Start Address
 High Byte

Start Address
 Low Byte

Requested Number
of Register High Byte

Requested Number
of Register Low Byte

Example: 01 10 00 09 00 02

6-4 Apply with ASCII Command for ADAM-6000 Modules
For users do not familiar to Modbus protocol, Advantech offers a function library as a protocol translator,

integrating ASCII command into Modbus/TCP structure. Therefore, users familiar to ASCII command

can access ADAM-6000 easily. Before explaining the structure of ASCII command packed with

Modbus/TCP format. Let’s see how to use an ASCII command and how many commands are available

for your program.

TCP Format Modbus Format ASCII Command
Figure 6-3 ASCII Command Structure in ADAM-6000

6-4-1 Syntax of ASCII
Command Syntax:

[delimiter character][address][slot][channel][command][data][checksum][carriage return]

Every command begins with a delimiter character. There are two valid characters:

$ and #

The delimiter character is followed by a two-character address (hex-decimal) that specifies the target

system. The two characters following the address specified the module and channel.

Depending on the command, an optional data segment may follow the command string. An optional two-

character checksum may also be appended to the command string. Every command is terminated with

a carriage return (cr).

Note: All commands should be issued in UPPERCASE characters only!

The command set is divided into the following three categories:

 System Command Set

· Analog Input Command Set

 Analog Input Alarm Command Set

· Digital I/O Modules Command Set

Every command set category starts with a command summary of the particular type of module, followed

by datasheets that give detailed information about individual commands.

Although commands in different subsections sometime share the same format, the effect they have on a

certain module can be completely different than that of another. Therefore, the full command sets for

each type of modules are listed along with a description of the effect the command has on the given

module.

6-4-2 I/O Module Command Set Searching Tables

ADAM-6017 Command Table

Command
Syntax Command Name Description

$aaAff Set Integration Time Sets the integration time for a
specified module

$aaB Get Integration Time Get the integration time from a
specified module

$aaAnntt Set Input Range Set the input range to the specified
channel in the analog input module

$aaBnn Read Input Range Read the input range of the specified
channel in the analog input module

#aan Read Analog Input
from Channel N

Return the input value from the
specified channel in the analog input
module

#aa Read Analog Input
from all channels

Return the input values from all
channels of the specified analog
input module

$aa0 Span Calibration Calibrate the analog input module to
correct the gain error

$aa1 Offset Calibration Calibrate the analog input module to
correct the offset error

$aa6 Read Channels Status Asks a specified input module to
return the status of all channels

$aa5mm Enable/Disable
multiplexing

Enables/Disables multiplexing
simultaneously for separate channels
of the specified input module

#aaMH Read all Max. Data Read the maximum data from all

channels in the specified module
#aaMHn Read single Max.

Data
Read the maximum date from a
specified channel in the module

#aaML Read all Min. Data Read the minimum data from all
channels in the specified module

#aaMLn Read single Min.
Data

Read the minimum data from a
specified channel in the module

$aaEmm Enable/Disable
Channels to Average

Enables/Disables the specified
channels for data average function

$aaE Read Ave. Channels Identify which channels are included
in average function

#aaDnd Set Digital Output Set the status of the specified digital
output in the ADAM-6017 module

$aaCjAhs Set Alarm Mode Set the High/Low alarm in either
Momentary or Latching mode

$aaCjAh Read Alarm Mode Returns the alarm mode for the
specified channels

$aaCjAhEs Enable/Disable AlarmEnables/Disables the high/low alarm
of the specified channels

$aaCjCh Clear Latch Alarm Resets a latched alarm

$aaCjAhCCn Set Alarm
Connection

Connects the High/Low alarm of a
specified input channel to interlock
with a specified output channel

$aaCjRhC Read Alarm
Connection

Returns the alarm configuration of a
specified input channel

$aaCjAhU Set Alarm Limit Set the High/Low alarm limit value
to a specified channel

$aaCjRhU Read Alarm Limit Returns the High/Low alarm limit
value of the specified channel

$aaCjS Read Alarm Status Reads whether an alarm occurred in
the specified channel

$aaF Read Firmware
Version

Return the firmware version code
from the specified ADAM-6000
module.

$aaM Read Module Name Return the module name from the
specified module

ADAM-6050 Command Table

Command
Syntax Command Name Description

$aaAff Configuration Sets the integration time for a
specified module

$aa6 Read Channels Status Asks a specified input module to
return the status of all channels

#aabb Write Digital Output Writes specified values to either a
single channel or all channels
simultaneously

$aa5 Reset Status Indicates whether a specified digital
I/O module was reset after the last
time the $aa5 command was issued

$aaF Read Firmware
Version

Return the firmware version code
from the specified ADAM-6000
module.

$aaM Read Module Name Return the module name from the
specified module

ADAM-6051 Command Table

Command
Syntax Command Name Description

$aaAff Configuration Sets the integration time for a
specified module

$aa6 Read Channels Status Asks a specified input module to
return the status of all channels

#aabb Write Digital Output Writes specified values to either a
single channel or all channels
simultaneously

$aa5 Reset Status Indicates whether a specified digital
I/O module was reset after the last
time the $aa5 command was issued

$aaF Read Firmware
Version

Return the firmware version code
from the specified ADAM-6000
module.

$aaM Read Module Name Return the module name from the
specified module

ADAM-6060 Command Table

Command
Syntax Command Name Description

$aaAff Configuration Sets the integration time for a
specified module

$aa6 Read Channels Status Asks a specified input module to
return the status of all channels

#aabb Write Digital Output Writes specified values to either a
single channel or all channels
simultaneously

$aa5 Reset Status Indicates whether a specified digital
I/O module was reset after the last
time the $aa5 command was issued

$aaF Read Firmware
Version

Return the firmware version code
from the specified ADAM-6000
module.

$aaM Read Module Name Return the module name from the
specified module

6-4-3 System Command Set

$aaAff

Name Set Integration Time

Description Sets an integration time to a specified ADAM-6000 module.

Syntax $aaAff(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to configure. (Always 01)

A is I/O module configuration command.

ff represents the integration time.

50 means 50ms (Operation Under 60 Hz power)

60 means 60ms (Operation Under 50 Hz power)

(cr) is the terminating character, carriage return (0Dh)

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal address of an

ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01A50(cr)

response: !01(cr)

The ADAM-6000 module at address 01h is configured to an integration time

50ms (60Hz). The response indicates that the command has been received.

Note: An analog input module requires a maximum of 7 seconds to perform auto calibration

and ranging after it is reconfigured. During this time span, the module cannot be addressed to

perform any other actions.

$aaB

Name Read Integration Time Setting

Description Read the integration time setting of a specified ADAM-6000 module.

Syntax $aaB(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to configure. (Always 01)

B is I/O module configuration reading command.

51 means 50ms (Operation Under 60 Hz power)

60 means 60ms (Operation Under 50 Hz power)

(cr) is the terminating character, carriage return (0Dh)

Response !aaff(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal address of an

ADAM-6000 module.

ff represents the integration time.

50 means 50ms (Operation Under 60 Hz power)

60 means 60ms (Operation Under 50 Hz power)

(cr) is the terminating character, carriage return (0Dh)

Example command: $01B(cr)

response: !0150(cr)

The ADAM-6000 module at address 01h is configured to an integration time

50ms (60Hz).

$aaM

Name Read Module Name

Description Returns the module name from a specified ADAM-6000 module.

Syntax $aaM(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to interrogate. (Always 01)

M is the Module Name command.

(cr) is the terminating character, carriage return (0Dh).

Response !aa60bb(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error, communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was in-valid.

aa (range 00-FF) represents the 2-character hexadecimal address of an

ADAM-6000 module.

bb (range 00-FF) represents the 2-character model number of an

ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh).

Example command: $01M(cr)

response: !0150(cr)

The command requests the system at address 01h to send its module name.

The system at address 01h responds with module name 6050 indicating that

there is an ADAM-6050 at address 01h.

$aaF

Name Read Firmware Version

Description Returns the firmware version code from a specified ADAM-6000 module.

Syntax $aaF(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to interrogate. (Always 01)

F is the Firmware Version command.

(cr) is the terminating character, carriage return (0Dh).

Response !aa(version)(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error, communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal address of an

ADAM-6000 module.

(version) represents the firmware version of the ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh).

Example command: $01F(cr)

response: !01A1.01(cr)

The command requests the system at address 01h to send its firmware version.

The system responds with firmware version A1.01.

6-4-4 Analog Input Command Set

Command

Syntax Command Name Description
$aaAnntt Set Input Range Set the input range to the specified

channel in the analog input module
$aaBnn Read Input Range Read the input range of the specified

channel in the analog input module
#aan Read Analog Input

from Channel N
Return the input value from the
specified channel in the analog input
module

#aa Read Analog Input
from all channels

Return the input values from all
channels of the specified analog
input module

$aa0 Span Calibration Calibrate the analog input module to
correct the gain error

$aa1 Offset Calibration Calibrate the analog input module to
correct the offset error

$aa6 Read Channels Status Asks a specified input module to
return the status of all channels

$aa5mm Enable/Disable
multiplexing

Enables/Disables multiplexing
simultaneously for separate channels
of the specified input module

#aaMH Read all Max. Data Read the maximum data from all
channels in the specified module

#aaMHn Read single Max.
Data

Read the maximum date from a
specified channel in the module

#aaML Read all Min. Data Read the minimum data from all
channels in the specified module

#aaMLn Read single Min.
Data

Read the minimum data from a
specified channel in the module

$aaEmm Enable/Disable
Channels to Average

Enables/Disables the specified
channels for data average function

$aaE Read Ave. Channels Identify which channels are included
in average function

#aaDnd Set Digital Output Set the status of the specified digital
output in the ADAM-6017 module

$aaAnntt

Name Set Input Range

Description Sets the input range for a specified channel of a specified analog input

module.

Syntax $aaAnntt

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to configure. (Always 01)

A represents the set input range command.

nn (range 00-07) represents the specific channel you want to set the input

range.

tt (range 0x07-0x0D) represents the 2-character code of the input type.

(Refer to the table below)

(cr) is the terminating character, carriage return (0Dh).

Signal Type and Range Against Code
4 ~ 20mA 07

 -10V ~ 10V 08
 0V ~ 5V 09
 -1V ~ 1V 0A

 0mV ~ 500mV 0B
 -100mV ~ 100mV 0C

 0 ~ 20mA 0D
Table 6-4 ADAM-6017 Analog Input Range mapping Table

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh).

Example command: $01A0107(cr)

response: !01(cr)

Channel 1 of the ADAM-6017 module at address 01h is set to the input range

4-20 mA. The response indicates that the command has been received as a

valid command.

$aaBnn

Name Read Input Range

Description Returns the input range for a specified channel of a specified analog input

module.

Syntax $aaBnn

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to interrogate. (Always 01)

B represents the read input range command.

nn (range 00-07) represents the specific channel you want to read the input

range.

(cr) is the terminating character, carriage return (0Dh).

Response !aatt(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

tt (range 0x07-0x0D) represents the 2-character code of the input type.

(Refer to the Table 6-4)

(cr) is the terminating character, carriage return (0Dh).

Example command: $01B01(cr)

response: !0107(cr)

Channel 1 of the ADAM-6017 module at address 01h responds with an input

range 4-20 mA.

$aan

Name Read Analog Input from Channel N

Description Returns the input data from a specified channel in a specified analog input

module.

Syntax $aan

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to interrogate. (Always 01)

n (range 0-8) represents the specific channel you want to read the input

data.

(cr) is the terminating character, carriage return (0Dh).

Response >(data)(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

 (cr) is the terminating character, carriage return (0Dh).

Example command: $012(cr)

response: >+10.000

Channel 2 of the ADAM-6017 module at address 01h responds with an input

value +10.000.

$aa

Name Read Analog Input from All Channels

Description Returns the input data from all channels in a specified analog input module.

Syntax $aa

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to interrogate. (Always 01)

(cr) is the terminating character, carriage return (0Dh).

Response >(data)(data)(data)(data)(data)(data)(data)(data)(data)(cr) if the command

is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

 (cr) is the terminating character, carriage return (0Dh).

Note: The latest data returned is the Average value of the preset channels in this module.

Example command: $01(cr)

response:

>+10.000+10.000+10.000+10.000+10.000+10.000+10.000+10.000+10.000

$aa0

Name Span Calibration

Description Calibrates a specified analog input module to correct for gain errors

Syntax $aa0(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module which is to be calibrated. (Always 01)

0 represents the span calibration command.

(cr) is the terminating character, carriage return (0Dh)

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Note: In order to successfully calibrate an analog input module's input range,

a proper calibration input signal should be connected to the analog input

module before and during the calibration process.

$aa1

Name Zero Calibration

Description Calibrates a specified analog input module to correct for offset errors

Syntax $aa1(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module which is to be calibrated. (Always 01)

1 represents the zero calibration command.

(cr) is the terminating character, carriage return (0Dh)

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Note: In order to successfully calibrate an analog input module's input range, a proper

calibration input signal should be connected to the analog input module before and during the

calibration process.

$aa6

Name Read Channels Status

Description Asks a specified input module to return the status of all channels

Syntax $aa6(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module you want to interrogate. (Always 01)

6 is the read channels status command.

(cr) is the terminating character, carriage return (0Dh)

Response !aamm(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

mm are two hexadecimal values. Each value is interpreted as 4 bits. The first

4-bit value represents the status of channels 4-7, the second 4 bits

represents the status of channels 0-3. A value of 0 means the channel is

disabled, while a value of 1 means the channel is enabled.

(cr) is the terminating character, carriage return (0Dh)

Example command: $016(cr)

response: !01FF(cr)

The command asks the analog input module in slot 1 of the system at address

01h to send the status of its input channels. The analog input module responds

that all its multiplex channels are enabling (FF equals 1111 and 1111).

$aa5mm

Name Enable/Disable Channels for multiplexing

Description Enables/Disables multiplexing for separate channels of the specified input

module

Syntax $aa5mm(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module. (Always 01)

5 identifies the enable/disable channels command.

mm (range 00-FF) are two hexadecimal characters. Each character is

interpreted as 4 bits. The first 4-bit value represents the status of channels

4-7; the second 4-bit value represents the status of channels 0-3. A value of

0 means the channel is disabled, while a value of 1 means the channel is

enabled.

(cr) is the terminating character, carriage return (0Dh)

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01581(cr)

response: !01(cr)

The command enables/disables channels of the analog input module at

address 01h. Hexadecimal 8 equals binary 1000, which enables channel 7

and disables channels 4, 5 and 6. Hexadecimal 1 equals binary 0001, which

enables channel 0 and disables channels 1, 2 and 3.

#aaMH

Name Read Maximum Value

Description Read the Maximum values from all channels in a specified analog input

module

Syntax $aaMH(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

MH represents the read maximum value command.

(cr) is the terminating character, carriage return (0Dh)

Response >(data)…(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01MH(cr)

response:

>+10.000+10.000+10.000+10.000+10.000+10.000+10.000+10.000+10.000

Note: The latest data returned is the Average value of the preset channels in this module.

#aaMHn

Name Read Maximum Value from channel N

Description Read the Maximum values from a specific channel in a specified analog

input module

Syntax $aaMHn(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

MH represents the read maximum value command.

n (range 0-8) represents the specific channel you want to read the input

data.

Note: The latest data returned is the Average value of the preset channels in this

module.

(cr) is the terminating character, carriage return (0Dh)

Response >(data)(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01MH2(cr)

response: >+10.000

#aaML

Name Read Minimum Value

Description Read the Minimum values from all channels in a specified analog input

module

Syntax $aaML(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

ML represents the read minimum value command.

(cr) is the terminating character, carriage return (0Dh)

Response >(data)…(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01ML(cr)

response:

>+10.000+10.000+10.000+10.000+10.000+10.000+10.000+10.000+10.000

Note: The latest data returned is the Average value of the preset channels in this module.

#aaMLn

Name Read Minimum Value from channel N

Description Read the Minimum values from a specific channel in a specified analog input

module

Syntax $aaMLn(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

ML represents the read minimum value command.

n (range 0-8) represents the specific channel you want to read the input

data.

Note: The latest data returned is the Average value of the preset channels in this

module.

(cr) is the terminating character, carriage return (0Dh)

Response >(data)(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01ML3(cr)

response: >+10.000

#aaEmm

Name Enable/Disable Channels for Average

Description Enables/Disables the specific channels in the analog input module for the

average function.

Syntax $aaEmm(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

E represents the enable/disable channel for average command.

mm (range 00-FF) are two hexadecimal characters. Each character is

interpreted as 4 bits. The first 4-bit value represents the status of channels

4-7; the second 4-bit value represents the status of channels 0-3. A value of

0 means the channel is disabled, while a value of 1 means the channel is

enabled.

(cr) is the terminating character, carriage return (0Dh)

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01E03(cr)

response: !01

The command enables/disables channels for average function in the analog

input module at address 01h. Hexadecimal 03 equals binary 00000011,

which enables channel 0, 1 and disables the rest of other channels.

#aaE

Name Read the Average Enable/Disable Status

Description Read the average enable/disable status of all channels in the specific analog

input module.

Syntax $aaE(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

E represents the enable/disable channel for average command.

(cr) is the terminating character, carriage return (0Dh)

Response !aamm(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

mm (range 00-FF) are two hexadecimal characters. Each character is

interpreted as 4 bits. The first 4-bit value represents the status of channels

4-7; the second 4-bit value represents the status of channels 0-3. A value of

0 means the channel is disabled, while a value of 1 means the channel is

enabled.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01E(cr)

response: !0103

The command set “ON” status to the channel 0 in the analog input module at

address 01h.

#aaDnd

Name Set Digital Output

Description Set the digital output status in ADAM-6000 analog input module.

Syntax $aaDnd(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address

of the ADAM-6000 module to be read. (Always 01)

D represents the digital output setting command.

n (range 0-1) represents the specific channel you want to set the output

status.

d (range 0-1) represents the status you want to set to the specific channel

(cr) is the terminating character, carriage return (0Dh)

Response !aa(cr) if the command is valid.

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication

error or if the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of

an ADAM-6000 module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $01D01(cr)

response: !01

The command set “ON” status to the channel 0 in the analog input module at

address 01h.

6-4-5 Analog Input Alarm Command Set

$aaCjAhs Set Alarm Mode Set the High/Low alarm in either
Momentary or Latching mode

$aaCjAh Read Alarm Mode Returns the alarm mode for the
specified channels

$aaCjAhEs Enable/Disable AlarmEnables/Disables the high/low alarm
of the specified channels

$aaCjCh Clear Latch Alarm Resets a latched alarm

$aaCjAhCCn Set Alarm
Connection

Connects the High/Low alarm of a
specified input channel to interlock
with a specified output channel

$aaCjRhC Read Alarm
Connection

Returns the alarm configuration of a
specified input channel

$aaCjAhU Set Alarm Limit Set the High/Low alarm limit value
to a specified channel

$aaCjRhU Read Alarm Limit Returns the High/Low alarm limit
value of the specified channel

$aaCjS Read Alarm Status Reads whether an alarm occurred in
the specified channel

$aaCjAhs

Name Set Alarm Mode

Description Sets the High/Low alarm of the specified input channel in the addressed ADAM-6000

module to either Latching or Momentary mode.

Syntax $aaCjAhs(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired channel j (j : 0 to 7).

A is the Set Alarm Mode command.

h indicates alarm types (H = High alarm, L = Low alarm)

s indicates alarm modes (M = Momentary mode, L = Latching mode)

(cr) represents terminating character, carriage return (0Dh)

Response !aa(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if

the specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal address of the corresponding ADAM-6000

module.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1AHL(cr)

response: !01(cr)

Channel 1 of the ADAM-6000 module at address 01h is instructed to set its High alarm in

Latching mode.

The module confirms that the command has been received.

$aaCjAh

Name Read Alarm Mode

Description Returns the alarm mode for the specified channel in the specified ADAM-6000

module.

Syntax $aaCjAh(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired channel j (j : 0 to 7).

A is the Read Alarm Mode command.

h indicates the alarm types (H = High alarm, L = Low alarm)

(cr) represents terminating character, carriage return (0Dh)

Response !aas(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if

the specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal address of the corresponding ADAM-6000

module.

s indicates alarm modes (M = Momentary mode, L = Latching mode)

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1AL(cr)

response: !01M(cr)

Channel 1 of the ADAM-6000 module at address 01h is instructed to return its Low alarm

mode.

The system responds that it is in Momentary mode.

$aaCjAhEs

Name Enable/Disable Alarm

Description Enables/Disables the High/Low alarm of the specified input channel in the addressed

ADAM-6000 module

Syntax $aaCjAhEs(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired channel j (j : 0 to 7).

AhEs is the Set Alarm Mode command.

h indicates alarm type (H = High alarm, L = Low alarm)

s indicates alarm enable/disable (E = Enable, D = Disable)

(cr) represents terminating character, carriage return (0Dh)

Response !aa(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if

the specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal address of the corresponding ADAM-6000

module.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1ALEE(cr)

response: !01(cr)

Channel 1 of the ADAM-6000 module at address 01h is instructed to enable its

Low alarm function.

The module confirms that its Low alarm function has been enabled.

Note: An analog input module requires a maximum of 2 seconds after it receives an

Enable/Disable Alarm command to let the setting take effect. During this interval, the

module cannot be addressed to perform any other actions.

$aaCjCh

Name Clear Latch Alarm

Description Sets the High/Low alarm to OFF (no alarm) for the specified input channel in the

addressed ADAM-6000 module

Syntax $aaCjCh(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired channel j (j : 0 to 7).

Ch is the Clear Latch Alarm command.

h indicates alarm type (H = High alarm, L = Low alarm)

(cr) represents terminating character, carriage return (0Dh)

Response !aa(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if

the specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal Modbus network address of the corresponding

ADAM-6000 module.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1CL(cr)

response: !01(cr)

Channel 1 of the ADAM-6000 module at address 01h is instructed to set its Low alarm

state to OFF.

The system confirms it has done so accordingly.

$aaCjAhCCn

Name Set Alarm Connection

Description Connects the High/Low alarm of the specified input channel to interlock the specified

digital output in the addressed ADAM-6000 module

Syntax $aaCjAhCCn(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000/TCP module. (Always 01)

Cj identifies the desired analog input channel j (j : 0 to 7).

AhC is the Set Alarm Connection command.

h indicates alarm type (H = High alarm, L = Low alarm)

Cn identifies the desired digital output channel n (n : 0 to 1). To disconnect the digital

output, n should be set as ‘*’.

(cr) represents terminating character, carriage return (0Dh)

Response !aa(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error

or if the specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal Modbus network address of the corresponding

ADAM-6000 module.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1ALCC0(cr)

response: !01(cr)

Channel 1 of the ADAM-6000 module at address 01h is instructed to connect its Low alarm

to the digital output of channel 0 in the specific ADAM-6000 module.

The system confirms it has done so accordingly.

$aaCjRhC

Name Read Alarm Connection

Description Returns the High/Low alarm limit output connection of a specified input channel in the

addressed ADAM-6000 module

Syntax $aaCjRhC(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired analog input channel j (j : 0 to 7).

RhC is the Read Alarm Connection command.

h indicates alarm type (H = High alarm, L = Low alarm)

(cr) represents terminating character, carriage return (0Dh)

Response !aaCn(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error

or if the specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal Modbus network address of the corresponding

ADAM-6000 module.

Cn identifies the desired digital output channel n (n : 0 to 1) whether interlock with the

alarm of the specific analog input channel. If the values of n are ‘*’, the analog input has no

connection with a digital output point.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1RLC(cr)

response: !01C0(cr)

Channel 1 of the ADAM-6000 module at address 01h is instructed to read its Low alarm

output connection.

The system responds that the Low alarm output connects to the digital output at channel 0

in the specific ADAM-6000 module.

$aaCjAhU

Name Set Alarm Limit

Description Sets the High/Low alarm limit value for the specified input channel of a specified

ADAM-6000 module.

Syntax $aaCjAhU(data)(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired analog input channel j (j : 0 to 7).

AhU is the Set Alarm Limit command.

h indicates alarm type (H = High alarm, L = Low alarm)

(data) represents the desired alarm limit setting. The format is always in engineering units.

(cr) represents terminating character, carriage return (0Dh)

Response !aa(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if the

specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal Modbus network address of the corresponding

ADAM-6000 module.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1AHU+080.00(cr)

response: !01(cr)

The high alarm limit of the channel 1 in the specific ADAM-6000 module at address 01h is

been set +80.

The system confirms the command has been received.

Note: An analog input module requires a maximum of 2 seconds after it receives a Set

Alarm Limit command to let the settings take effect. During this interval, the module cannot

be addressed to perform any other actions.

$aaCjRhU

Name Read Alarm Limit

Description Returns the High/Low alarm limit value for the specified input channel in the

addressed ADAM-6000 module

Syntax $aaCjRhU(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired analog input channel j (j : 0 to 7).

RhU is the Read Alarm Limit command.

h indicates alarm type (H = High alarm, L = Low alarm)

(cr) represents terminating character, carriage return (0Dh)

Response !aa(data)(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if the

specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal Modbus network address of the corresponding

ADAM-6000 module.

(data) represents the desired alarm limit setting. The format is always in engineering units.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1RHU(cr)

response: !01+2.0500(cr)

Channel 1 of the ADAM-6000 module at address 01h is configured to accept 5V input. The

command instructs the system to return the High alarm limit value for that channel.

The system responds that the High alarm limit value in the desired channel is 2.0500 V.

$aaCjS

Name Read Alarm Status

Description Reads whether an alarm occurred to the specified input channel in the specified

ADAM-6000 module

Syntax $aaCjS(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of an

ADAM-6000 module. (Always 01)

Cj identifies the desired analog input channel j (j : 0 to 7).

S is the Read Alarm Status command.

(cr) represents terminating character, carriage return (0Dh)

Response !aahl(cr) if the command was valid

?aa(cr) if an invalid operation was entered.

There is no response if the system detects a syntax error or communication error or if the

specified address does not exist.

! delimiter character indicating a valid command was received.

aa represents the 2-character hexadecimal address Modbus of the corresponding

ADAM-6000 module.

h represents the status of High alarm. ‘1’ means the High alarm occurred, ‘0’ means it did

not occur.

l represents the status of Low alarm. ‘1’ means the Low alarm occurred, ‘0’ means it did

not occur.

(cr) represents terminating character, carriage return (0Dh)

Example command: $01C1S(cr)

response: !0101(cr)

The command asks the module at address 01h to return its alarm status for channel 1.

The system responds that a High alarm has not occurred, but the Low alarm has occurred.

6-4-6 Digital Input/Output Command Set

Command
Syntax Command Name Description

$aa6 Read Channels Status Asks a specified input module to
return the status of all channels

#aabb Write Digital Output Writes specified values to either a
single channel or all channels
simultaneously

$aa6

Name Read Channel Status

Description This command requests that the specified ADAM-6000 module return the status of its

digital input channels and a read-back value of its digital output channels.

Syntax $aa6(cr)

$ is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of the

ADAM-6000 module. (Always 01)

6 is the Digital Data In command.

(cr) is the terminating character, carriage return (0Dh)

Response !aa(data)(data)00(cr) if the command is valid. (ADAM-6050/6051/6060)

?aa(cr) if an invalid operation was entered.

There is no response if the module detects a syntax error or communication error or if

the specified address does not exist.

! delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of

an ADAM-6000 module.

(data) a 2-character hexadecimal value representing the values of the digital input

module.

(cr) is the terminating character, carriage return (0Dh)

Example command: $016(cr)

response: !01112200(cr)

The command asks the specific ADAM-6000 module at address 01h to return the

values of all channels.

The first 2-character portion of the response indicates the address of the ADAM-6000

module. The second 2-character portion of the response, value 11h (00010001),

indicates that digital input channels 8 and 12 are ‘ON’, channels 9, 10, 11, 13, 14 and

15 are ‘OFF’. The third 2-character portion of the response, value 22h (00100010),

indicates that digital input channels 1 and 5 are ON, and channels 0, 2, 3, 4, 6 and 7

are OFF.

#aabb(data)

Name Write Digital Output

Description This command sets a single or all digital output channels to the specific ADAM-6000

module.

Syntax #aabb(data)(cr)

is a delimiter character.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of

the ADAM-6000 module. (Always 01)

bb is used to indicate which channel(s) you want to set.

Writing to all channels (write a byte): both characters should be equal to zero (BB=00).

Writing to a single channel (write a bit): first character is 1, second character indicates

channel number which can range from 0h to Fh.

(data) is the hexadecimal representation of the digital output value(s).

When writing to a single channel (bit) the first character is always 0. The value of

the second character is either 0 or 1.

When writing to all channels (byte) 2 or 4-characters are significant. The digital

equivalent of these hexadecimal characters represent the channels' values.

Response >(cr) if the command was valid.

?aa(cr) if an invalid command has been issued.

There is no response if the module detects a syntax error or communication error or if

the specified address does not exist.

> delimiter character indicating a valid command was received.

? delimiter character indicating the command was invalid.

aa (range 00-FF) represents the 2-character hexadecimal Modbus network address of

an ADAM-6000 module that is responding.

(cr) is the terminating character, carriage return (0Dh)

Example command: #151201(cr)

response: >(cr)

An output bit with value 1 is sent to channel 2 of a digital output module at

address 01h. Channel 2 of the digital output module is set to ‘ON’.

command: #010012(cr)

response: >(cr)

An output byte with value 12h (00010010) is sent to the digital output module

at address 01h. Channels 1and 4 will be set to ‘ON’, and all other channels

will be set to ‘OFF’.

Note: If any channel of the digital output module is configured as the output for an analog

input alarm, it cannot be reconfigured via digital output commands. Channels used for

analog input alarms always have a higher priority.

 Appendix A
 Design Worksheets

An organized system configuration will lead to efficient performance and reduce engineer effort. This Appendix

provides the necessary worksheet, helping users to configure their DA&C system in order. Follow these working steps

to build up your system relational document:

Step 1. Asking questions and getting answers for your control strategy.

1) What will be monitored and controlled? (List the equipment)

2) What will be monitored and controlled separately? (Divide the function area)

3) What will be monitored and controlled by ADAM-6000 I/O? (List the target equipment in different function areas)

Step 2. Identify the I/O types of each equipment and full-fill Table A-1 to establish the I/O data base.

Function
Area

Equipment Input or
Output

I/O Module
Type

I/O Module
Product No.

Voltage of
Range

Current of
Range

Special
Requirements

 Table A-1 I/O Data Base

Step 3. Mapping the I/O data base into ADAM-6000 I/O modules.

1) In column A, note the ADAM-6000/TCP IP addresses mapped for individual function areas.

2) In column B, list the I/O module’s product number.

3) In column C, enter the maximum number of I/O points available per module.

4) In column D, total the number of the I/O point you need.

5) In column E, calculate the total number of these modules that you will need.

6) In column F, enter the number of spare modules that you may need for future expansion in your systems.

7) In column G, enter the total number (Required + Spare) of these modules that you need for these systems.

<A> <C> <D> <E> <F> <G>

ADAM-6000
 IP Address

I/O Module
Product No.

I/O Points
per Module

Total I/O Points
Required

I/O Module
Required

Spare
I/O Modules

Total
I/O Modules

 Table A-2 Summary Required Modules

Step 4. Implement the Modbus address in to the I/O table.
ADAM-6000
 IP Address

I/O Type Channel
Number

I/O
Address

Tag Name Equipment &
Description

 Table A-3 Table for Programming

These several worksheets are very useful to hardware wiring and software integration, please make copies to establish

your own system configuration documentation.

	6K_manual.pdf
	Product Warranty
	Technical Support
	6k manual organization.pdf
	Manual Organization

	How to use this manual.pdf
	How to use this manual

	6K_manual.pdf
	Understanding Your System
	Using this Chapter
	
	If you want to read about
	Go to page

	chapter2cover.pdf
	Selecting Your Hardware Components
	Using this Chapter

	chapter3cover.pdf
	Hardware Installation Guide
	Using this Chapter

	6k 3-2.pdf
	3-2-1 Panel mounting
	3-2-2 DIN rail mounting

	chapter4cover.pdf
	I/O Module Introduction
	Using this Chapter

	6k 4-1(n).pdf
	ADAM-6017 8-channel Analog Input with 2/DO Module
	ADAM-6017 Specification
	Built-in Watchdog Timer

	Application Wiring
	
	Assigning address for ADAM-6017 Modules

	ADAM-6050 18-channel Digital I/O Module
	ADAM-6050 Specification
	Application Wiring
	
	Assigning address for ADAM-6050 Modules

	ADAM-6051 16-channel Digital I/O w/Counter Module
	ADAM-6051 Specification
	Application Wiring
	
	Assigning address for ADAM-6051 Modules

	ADAM-6060 6-channel Relay Output with DI Module
	ADAM-6060 Specification
	Application Wiring
	
	Assigning address for ADAM-6060 Modules

	chapter5cover.pdf
	System Configuration Guide
	Using this Chapter

	6k 5-1.pdf
	Function Menu
	Tool Bar
	Digital Input Output Module
	Analog Input Module

	6k 5-3-5.pdf
	Zero Calibration
	Span Calibration
	Data Stream Configuration
	Data Stream Monitoring

	chapter6cover.pdf
	Planning Your Application Program
	Using this Chapter

	6k 6-1(N).pdf
	ADAMTCP_Connect
	ADAMTCP_Disconnect
	ADAMTCP_GetDLLVersion
	ADAMTCP_ReadReg
	ADAMTCP_WriteReg
	ADAMTCP_ReadCoil
	ADAMTCP_WriteCoil
	ADAMTCP_SendReceive5KTCPCmd
	ADAMTCP_SendReceive6KTCPCmd
	ADAMTCP_Read6KDIO

	ADAMTCP_Write6KDO
	
	ADAMTCP_Read6KAI

	ADAMTCP_Read6KDIOMode
	ADAMTCP_Write6KDIOMode
	ADAMTCP_Read6KSignalWidth
	ADAMTCP_Read6KCounter
	ADAMTCP_Clear6KCounter
	ADAMTCP_Start6KCounter
	ADAMTCP_Stop6KCounter
	ADAMTCP_Clear6KDILatch

	6k 6-4.pdf
	ADAM-6017 Command Table
	ADAM-6050 Command Table
	ADAM-6051 Command Table
	ADAM-6060 Command Table

	Appendix A.pdf
	Design Worksheets

	6017.pdf
	ADAM-6017 8-channel Analog Input with 2/DO Module
	ADAM-6017 Specification
	Built-in Watchdog Timer

	Application Wiring
	
	Assigning address for ADAM-6017 Modules

