MIC-3714

Simultaneous 4-CH Analog Input Card for the CompactPCI

User Manual

Copyright

The documentation and the software included with this product are copyrighted by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

Acknowledgments

PC-LabCard is a trademark of Advantech Co., Ltd. IBM and PC are trademarks of International Business Machines Corporation. MS-DOS, Windows, Microsoft Visual C++ and Visual BASIC are trademarks of Microsoft Corporation. Intel and Pentium are trademarks of Intel Corporation. Delphi and C++ Builder are trademarks of Borland Corporation.

CE notification

The MIC-3714, developed by ADVANTECH CO., LTD., has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables. This kind of cable is available from Advantech. Please contact your local supplier for ordering information.

On-line Technical Support

For technical support and service, please visit our support website at:

http://www.advantech.com/support

Part No. 2003371400

1st Edition

Printed in Taiwan

December 2005

Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For out-of-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- 1. Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandize authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Declaration of Conformity

CE

This product has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables. This kind of cable is available from Advantech. Please contact your local supplier for ordering information.

FCC Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Class B

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.

FM

The MIC-3714 has passed the FM certification. According to the National Fire Protection Association, work sites are classified into different classes, divisions and groups, based on hazard considerations. MIC-3714 is compliant with the specifications of Class I, Division 2, Groups A, B, C and D indoor hazards.

Technical Support and Assistance

- Step 1. Visit the Advantech web site at **www.advantech.com/support** where you can find the latest information about the product.
- Step 2. Contact your distributor, sales representative, or Advantech's customer service center for technical support if you need additional assistance. Please have the following information ready before you call:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Document Feedback

To assist us in making improvements to this manual, we would welcome comments and constructive criticism. Please send all such - in writing to: support@advantech.com

Safety Instructions

- 1. Read these safety instructions carefully.
- 2. Keep this User's Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.

- 6. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- 7. The openings on the enclosure are for air convection. Protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 8. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 9. Position the power cord so that people cannot step on it. Do not place anything over the power cord.
- 10. All cautions and warnings on the equipment should be noted.
- 11. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 12. Never pour any liquid into an opening. This may cause fire or electrical shock.
- 13. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 14. If one of the following situations arises, get the equipment checked by service personnel:
- a. The power cord or plug is damaged.
- b. Liquid has penetrated into the equipment.
- c. The equipment has been exposed to moisture.
- d. The equipment does not work well, or you cannot get it to work according to the user's manual.
- e. The equipment has been dropped and damaged.
- f. The equipment has obvious signs of breakage.
- 15. DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT WHERE THE STORAGE TEMPERATURE MAY GO BELOW -20° C (-4° F) OR ABOVE 60° C (140° F). THIS COULD DAM-AGE THE EQUIPMENT. THE EQUIPMENT SHOULD BE IN A CONTROLLED ENVIRONMENT.
- 16. CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER, DISCARD USED BATTERIES ACCORD-ING TO THE MANUFACTURER'S INSTRUCTIONS.

The sound pressure level at the operator's position according to IEC 704-1:1982 is no more than 70 dB (A).

DISCLAIMER: This set of instructions is given according to IEC 704-1. Advantech disclaims all responsibility for the accuracy of any statements contained herein.

Wichtige Sicherheishinweise

- 1. 1. Bitte lesen sie Sich diese Hinweise sorgfältig durch.
- 2. Heben Sie diese Anleitung für den späteren Gebrauch auf.
- 3. Vor jedem Reinigen ist das Gerät vom Stromnetz zu trennen. Verwenden Sie Keine Flüssig-oder Aerosolreiniger. Am besten dient ein angefeuchtetes Tuch zur Reinigung.
- 4. Die NetzanschluBsteckdose soll nahe dem Gerät angebracht und leicht zugänglich sein.
- 5. Das Gerät ist vor Feuchtigkeit zu schützen.
- 6. Bei der Aufstellung des Gerätes ist auf sicheren Stand zu achten. Ein Kippen oder Fallen könnte Verletzungen hervorrufen.
- 7. Die Belüftungsöffnungen dienen zur Luftzirkulation die das Gerät vor überhitzung schützt. Sorgen Sie dafür, daB diese Öffnungen nicht abgedeckt werden.
- 8. Beachten Sie beim. AnschluB an das Stromnetz die AnschluBwerte.
- 9. Verlegen Sie die NetzanschluBleitung so, daB niemand darüber fallen kann. Es sollte auch nichts auf der Leitung abgestellt werden.
- 10. Alle Hinweise und Warnungen die sich am Geräten befinden sind zu beachten.
- 11. Wird das Gerät über einen längeren Zeitraum nicht benutzt, sollten Sie es vom Stromnetz trennen. Somit wird im Falle einer Überspannung eine Beschädigung vermieden.
- 12. Durch die Lüftungsöffnungen dürfen niemals Gegenstände oder Flüssigkeiten in das Gerät gelangen. Dies könnte einen Brand bzw. elektrischen Schlag auslösen.
- Öffnen Sie niemals das Gerät. Das Gerät darf aus Gründen der elektrischen Sicherheit nur von authorisiertem Servicepersonal geöffnet werden.
- 14. Wenn folgende Situationen auftreten ist das Gerät vom Stromnetz zu trennen und von einer qualifizierten Servicestelle zu überprüfen:
- a Netzkabel oder Netzstecker sind beschädigt.

- b Flüssigkeit ist in das Gerät eingedrungen.
- c Das Gerät war Feuchtigkeit ausgesetzt.
- d Wenn das Gerät nicht der Bedienungsanleitung entsprechend funktioniert oder Sie mit Hilfe dieser Anleitung keine Verbesserung erzielen.
- e Das Gerät ist gefallen und/oder das Gehäuse ist beschädigt.
- f Wenn das Gerät deutliche Anzeichen eines Defektes aufweist.
- 15. VOSICHT: Explisionsgefahr bei unsachgemaben Austausch der Batterie.Ersatz nur durch densellben order einem vom Hersteller empfohlene-mahnlichen Typ. Entsorgung gebrauchter Batterien navh Angaben des Herstellers.
- 16. ACHTUNG: Es besteht die Explosionsgefahr, falls die Batterie auf nicht fach-männische Weise gewechselt wird. Verfangen Sie die Batterie nur gleicher oder entsprechender Type, wie vom Hersteller empfohlen. Entsorgen Sie Batterien nach Anweisung des Herstellers.

Der arbeitsplatzbezogene Schalldruckpegel nach DIN 45 635 Teil 1000 beträgt 70dB(A) oder weiger.

Haftungsausschluss: Die Bedienungsanleitungen wurden entsprechend

der IEC-704-1 erstellt. Advantech lehnt jegliche Verantwortung für die

Richtigkeit der in diesem Zusammenhang getätigten Aussagen ab.

Safety Precaution - Static Electricity

Follow these simple precautions to protect yourself from harm and the products from damage.

- 1. To avoid electrical shock, always disconnect the power from your PC chassis before you work on it. Don't touch any components on the CPU card or other cards while the PC is on.
- 2. Disconnect power before making any configuration changes. The sudden rush of power as you connect a jumper or install a card may damage sensitive electronic components.

Contents

Chapter	1	Introduction	. 2
-	1.1	Features	2
	1.2	Applications	
	1.3	Installation Guide	4
		Figure 1.1:Installation Flow Chart	5
	1.4	Software Overview	6
	1.5	Device Drivers Roadmap	7
	1.6	Accessories	9
Chapter	2	Installation	12
	2.1	Unpacking	12
	2.2	Driver Installation	. 13
		Figure 2.1: Automation Software Setup Screen	. 14
		Figure 2.2:Options for Driver Setup	. 14
	2.3	Hardware Installation	15
		2.3.1 Installing a CompactPCI Card:	. 15
	2.4	Device Setup & Configuration	16
		Figure 2.3: The Device Manager Dialog Box	. 17
		Figure 2.4:Device Names in the Device Box	. 18
	2.5	Device Testing	18
		Figure 2.5:Device Test Dialog Box	. 19
		Figure 2.6: Analog Input Tab	. 20
Chapter	3	Signal Connections	22
	3.1	Overview	22
	3.2	Switch and Jumper Settings	. 22
		Figure 3.1:Connector, Jumper, and Switch Locations	. 22
		Figure 3.2:Power on Config. After Hot Reset (JP1)	. 23
	3.3	Signal Connections	. 24
		Figure 3.3:I/O Connector Pin Assignment	. 24
Chapter	4	Principles of Operation	26
	4.1	Analog Input Range and Gains	26
	4.2	Analog Input Acquisition Modes	26
		Figure 4.1:Post-Trigger Acquisition Mode	. 27
		Figure 4.2:Delay-Trigger Acquisition Mode	. 28
		Figure 4.3: About-Trigger Acquisition Mode	. 29
		Figure 4.4:Pre-Trigger Acquisition Mode	. 29
	4.3	A/D Sample Clock Sources Figure 4.5: MIC-3714 Sample Clock Sources	30
	4.4	Trigger Sources	31
	4.5	Analog Input Data Format	32
Chapter	5	Calibration	34
1		Figure 5.1: Setup Button launches the Device Setting	34
		Figure 5.2:Calibration Button launches Calibration	. 35

	Figure 5.3:Start-up Window for Offset Calibration	. 36
	Figure 5.4: Adjustment of Offset Calibration	. 36
	Figure 5.5:Offset Calibration Success	. 37
	Figure 5.6:Offset Calibration Failed	. 38
	Figure 5.7:Start-up Window for Gain Calibration	. 38
	Figure 5.8: Adjustment Process for Gain Calibration.	. 39
	Figure 5.9:Gain Calibration Success	. 39
	Figure 5.10:Gain Calibration Failed	. 40
	Figure 5.11:Calibration Procedure Completed	. 40
Appendix A	Specifications	42
Appendix B	Block Diagram	46
Appendix C	Register Structure & Format	48
C.1	Overview	. 48
C.2	Register Format	. 48
C.3	A/D SW Trigger	. 53
C.4	AI Range Control	. 54
C.5	A/D Converter Enable	. 55
C.6	Clock Source and Divider	. 56
C.7	Trigger Mode and Source	. 57
C.8	FIFO Control	. 59
C.9	FIFO Status	. 39
C.10	FIFO for Programmable Flag	. 01
C.11	Interrupt Control/Flag	. 02
C.12 C.13	Clear Interrupt	. 05
C.13	Analog Trigger Threshold Voltage	65
C 15	Calibration Command	66
C 16	Board ID	67
C 17	Reset DMA Start Channel to CH0	67
C.18	AD Channel nDATA	. 68
C.19	DMA Request Selector.	. 69
	*	

CHAPTER

Introduction

Sections include:

- Features
- Applications
- Installation Guide
- Software Overview
- Device Drivers Roadmap
- Accesories

Chapter 1 Introduction

Thank you for buying the Advantech MIC-3714. MIC-3714 is a 30MHz Simultaneous 4-CH Analog Input Card for the PCI bus. It is an advancedperformance data acquisition card based on 32-bit CompactPCI architecture. The maximum sampling rate of MIC-3714 is up to 30MHz samples per second, with an emphasis on continuous, non-stop, high-speed, streaming data of A/D samples to host memory.

The following sections of this chapter will provide further information about features of the multifunction cards, a Quick Start for installation, together with some brief information on software and accessories for the MIC-3714 card.

1.1 Features

The Advantech MIC-3714 offers the following main features:

- 32-bit PCI-Bus Mastering DMA data transfer
- 4 A/D converters simultaneously sampling
- 12-bit A/D converter up to 30M samples per second
- 4 single-ended analog input channels
- Programmable gain for each input channel
- On board FIFO memory
- Multiple A/D triggering modes
- Programmable pacer/counter
- Auto calibration

Some of them are highlighted and more detailed, such as the following:

PCI-Bus Mastering Data Transfer

MIC-3714 supports PCI-Bus mastering DMA for high-speed data transfer. By setting aside a block of memory in the PC, MIC-3714 performs bus-mastering data transfers without CPU intervention, freeing the CPU to perform other more urgent tasks such as data analysis and graphic manipulation. The function allows users to run all I/O functions simultaneously at full speed without losing data.

Simultaneous Sampling

MIC-3714 is capable of simultaneous sampling, and uses 4 identical circuitries and ADC for each analog input channel. Where the time relationship between inputs is important, this feature allows you to sample simultaneously.

S/W, Internal and External Pacer Triggering Supported

MIC-3714 supports three kinds of trigger modes for A/D conversion: software triggering, internal pacer triggering and external pacer triggering. The software trigger allows users to acquire a sample when needed; the internal pacer triggers continuous high-speed data acquisitions. MIC-3714 also accepts external trigger sources, allowing synchronous sampling with external devices.

On-board FIFO Memory

There are 32K samples of FIFO memory on MIC-3714. This is an important feature for fast data transfer and stable performance using Windows OS.

Auto Calibration

MIC-3714 features software auto calibration. There is no variable resister trimming required. This is convenient for user to calibrate.

Note: For detailed specifications of the MIC-3714, please refer to Appendix *A*, Specifications.

1.2 Applications

The following are some of the possible applications of MIC-3714:

- Testing Instrument
- Ultrasound Imaging
- Gamma Camera Imaging
- CCD Camera Imaging
- Video Digitizing

1.3 Installation Guide

Before you install your MIC-3714 card, please make sure if you have the following necessary components:

MIC-3714 DA&C card

MIC-3714 User's Manual	This manual
Driver software	Advantech DLL drivers (included in the companion CD-ROM)
Wiring cable	PCL-10901-1, PCL-1010B-1 (optional)
Wiring board	ADAM-3909 (optional)
Computer	Personal computer or workstation with a PCI- bus slot (running Windows 98/2000/XP)

Some other optional components are also available for enhanced operation:

Application software: ActiveDAQ or other 3rd party software packages

After you get the necessary components and maybe some of the accessories for enhanced operation of your Multifunction card, you can then begin the Installation procedures. Fig. 1-1 on the next page provides a concise flow chart to give users a broad picture of the software and hardware installation procedures:

Figure 1.1: Installation Flow Chart

1.4 Software Overview

Advantech offers a rich set of DLL drivers, third-party driver supports and application software to help fully utilize the functions of your MIC-3714 card:

- Device Drivers (on the companion CD-ROM)
- LabVIEW driver

Programming choices for DA&C cards

You may use Advantech application software such as Advantech Device Drivers. On the other hand, advanced users can use another option for register-level programming, although it is not recommended due to its laborious and time-consuming nature.

Device Drivers

The Advantech Device Drivers software is included on the companion CD-ROM at no extra charge. It also comes with all Advantech DA&C cards. Advantech's device drivers feature a complete I/O function library to help boost your application performance. The Advantech Device Drivers for Windows 98/2000/XP work seamlessly with development tools such as Visual C++, Visual Basic, Borland C++ Builder and Borland Delphi.

Register-level Programming

Register-level programming is reserved for experienced programmers who find it necessary to write code directly at the level of device registers. Since register-level programming requires much effort and time, we recommend that you use the Advantech Device Drivers instead. However, if register-level programming is necessary, you should refer to the relevant information in Appendix C, Register Structure and Format, or to the example codes included on the companion CD-ROM.

1.5 Device Drivers Roadmap

This section will provide you a roadmap to demonstrate how to build an application from scratch using Advantech Device Drivers with your favorite development tools such as Visual C++, Visual Basic, Delphi and C++ Builder. The step-by-step instructions on how to build your own applications using each development tool will be given in the Device Drivers Manual. Moreover, a rich set of example source code is also given for your reference.

Programming Tools

Programmers can develop application programs with their favorite development tools:

- Visual C++
- Visual Basic
- Delphi
- C++ Builder

For instructions on how to begin programming work with each development tool, Advantech offers a Tutorial Chapter in the Device Drivers Manual for your reference.

Please refer to the corresponding sections in this chapter of the Device Drivers Manual to begin your programming efforts. You can also look at the example source code provided for each programming tool, since they can get you very well oriented.

The Device Drivers Manual can be found on the companion CD-ROM. Or if you have already installed the Device Drivers on your system, The Device Drivers Manual can be readily accessed through the Start button:

Start/Programs/Advantech eAutomation/Device Manager/Device Driver's Manual

The example source codes could be found under the corresponding installation folder such as the default installation path:

\Program Files\Advantech\ADSAPI\Examples

For information about using other function groups or other development tools, please refer to *Device Driver Programming Guide* chapter and the *Function Reference* chapter on the Device Drivers Manual.

Programming with Device Drivers Function Library

Advantech Device Drivers offers a rich function library to be utilized in various application programs. This function

library consists of numerous APIs that support many development tools, such as Visual C++, Visual Basic, Delphi and C++ Builder.

According to their specific functions or services, those APIs can be categorized into several function groups:

Device Function Analog Input/Output Function Digital Input/Output Function Port I/O Function Counter Function Temperature Measurement Function Alarm Function Communication port Function High speed Function Hardware Function

For the usage and parameters of each function, please refer to the *Function Description* chapter in the Device Drivers Manual.

Troubleshooting Device Drivers Error

Driver functions will return a status code when they are called to perform a certain task for the application. When a function returns a code that is not zero, it means the function has failed to perform its designated function. To troubleshoot the Device Drivers error, you can pass the error code to **DRV_GetErrorMessage** function to return the error message. Or you can refer to the Device Drivers Error Codes Appendix in the Device Drivers Manual for a detailed listing of the Error Code, Error ID and the Error Message.

1.6 Accessories

Advantech offers a complete set of accessory products to support the MIC-3714 card. These accessories include:

Wiring Cable

- PCL-10901-1 The PCL-10901-1 cable is specially designed for MIC-3714 cards to connect to the wiring board, ADAM-3909, for external synchronization signal source, such like an external trigger and/or clock signal.
- PCL-1010B-1 The PCL-1010B-1 cable is designed for connecting to the signal source. The cable links the MIC-3714 cards with the signal source via the BNC connectors. There are all four BNC ports on board available for simultaneous signal input.

Wiring Board

ADAM-3909 The ADAM-3909 is a DB-9 Wiring Terminal for DIN-rail Mounting. This terminal module can be readily connected to the Advantech PC-Lab cards and allows easy yet reliable access to individual pin connections for the MIC-3714 card.

MIC-3714 User Manual

CHAPTER CHAPTER

Installation

Sections include:

- Installation
- Unpacking
- Driver Installation
- Hardware Installation
- Device Setup and Configuration
- Device Testing

Chapter 2 Installation

This chapter gives users a package item checklist, proper instructions about unpacking and step-by-step procedures for both driver and card installation.

2.1 Unpacking

After receiving your MIC-3714 package, please inspect its contents first. The package should contain the following items:

- MIC-3714 card
- Companion CD-ROM (DLL driver included)
- User's Manual

The MIC-3714 card harbors certain electronic components vulnerable to electrostatic discharge (ESD). ESD could easily damage the integrated circuits and certain components if preventive measures are not carefully paid attention to.

Before removing the card from the antistatic plastic bag, you should take following precautions to ward off possible ESD damage:

- Touch the metal part of your computer chassis with your hand to discharge static electricity accumulated on your body. Or use a grounding strap.
- Touch the anti-static bag to a metal part of your computer chassis before opening the bag.
- Take hold of the card only by the metal bracket when removing it from the bag.

After taking out the card, first you should:

Inspect the card for any possible signs of external damage (loose or damaged components, etc.). If the card is visibly damaged, please notify our service department or the local sales representative immediately. Avoid installing a damaged card into your system.

Also, be careful of the following aspects to ensure proper installation:

- Avoid physical contact with materials that could hold static electricity such as plastic, vinyl and Styrofoam.
- Whenever you handle the card, grasp it only by its edges. DO NOT TOUCH the exposed metal pins of the connector or the electronic components.

Note: Keep the anti-static bag for future use. You might need the original bag to store the card if you have to remove the card from the PC or transport it elsewhere.

2.2 Driver Installation

We recommend you to install the driver before you install the MIC-3714 card into your system, since this will guarantee a smooth installation process.

The Advantech Device Drivers setup program for the MIC-3714 card is included on the companion CD-ROM that is shipped with your DA&C card package. Please follow the steps below to install the driver software:

Step 1: Insert the companion CD-ROM into your CD-ROM drive.

Step 2: The Setup program will be launched automatically if you have the AUTORUN function enabled on your system. When the Setup program is launched, you'll see the following setup screen.

Note: If the AUTORUN function is not enabled on your computer, use Windows Explorer or the Windows Run command to execute SETUP.EXE on the companion CD-ROM.

Figure 2.1: Automation Software Setup Screen **Step 3:** Select the Individual Drivers option.

Step 4: Select the specific device then just follow the installation instructions step by step to complete your device driver setup.

Figure 2.2: Options for Driver Setup

For further information on driver-related issues, an online version of Device Drivers Manual is available by accessing:

Start/Programs/Advantech eAutomation/Device Driver's Manual

2.3 Hardware Installation

Note: Make sure you first install the driver before installing the card. We strongly recommend that you install the software driver before installing the hardware into your system, since this will guarantee a smooth and trouble-free installation process. For more information about the driver installation, configuration and removal procedures for Windows 9X, Windows NT, Windows 2000 and Windows XP, please see the Device Driver Manual.

When installing the MIC-3714 card, please make sure the DLL driver of MIC-3714 installation is completed. You can then go on to install the MIC-3714 card in your CompactPCI system. If you have any doubts, please consult the user manual or related documentation. Please follow the below steps to install the card in your system.

2.3.1 Installing a CompactPCI Card:

Step 1: Remove one cover on the unused slot of your CompactPCI computer slot.

Step 2: Hold the card vertically. Be sure that the card is pointing in the correct direction. The components of the card should be pointing to the right-hand side and the black handle of the card should be pointing to the lower edge of the backplane.

Step 3: Hold the lower handle and pull the handle down to unlock it.

Step 4: Insert the MIC-3714 card into the CompactPCI chassis carefully by sliding the lower edges of the card into the card guides.

Step 5: Push the card into the slot gently by sliding the card along the card guide until J1 meets the long needle on the backplane, then the **Blue LED** on the front panel of the card will be lit.

Note: If your card is correctly positioned and has been slid all the way into the chassis, the handle should match the rectangular holes. If not, remove the card from the card guide and repeat step 3 again. Do not try to install a card by forcing it into the chassis

Step 6: Now push the card into the right place, and the **Blue LED** will turn off.

Step 7: After the **Blue LED** is off, push the handle to secure the card and lock it into place.

Note: In case you installed the card without installing the DLL driver first, Windows 98/200/XP will recognize your card as an "unknown device" after rebooting, and will prompt you to provide the necessary driver. You should ignore the prompting messages (just click the Cancel button) and set up the driver according to the steps described in 2.2 Driver Installation.

After the MIC-3714 card is installed, you can verify whether it is properly installed on your system in the Device Manager:

1. Access the Device Manager through:

Start /Control Panel /System /Device Manager.

2. The device name of the MIC-3714 should be listed on the Device Manager tab on the System Property Page.

Note: If your card is properly installed, you should see the device name of your card listed on the Device Manager tab. If you do see your device name listed on it but marked with an exclamation sign "!", it means your card has not been correctly installed. In this case, remove the card device from the Device Manager by selecting its device name and press the Remove button. Then go through the driver installation process again.

After your card is properly installed on your system, you can now configure your device using the Device Manager program that has itself already been installed on your system during driver setup. A complete device installation procedure should include board selection and device setup. After that, you can operate this card through the operation. The following sections will guide you through the board selection, device setup and operation of your device.

2.4 Device Setup & Configuration

The Device Manager program is a utility that allows you to setup, configure and test your device, and later store your settings on the system registry. These settings will be used when you call the APIs of Advantech Device Drivers.

Setting Up and Configuring the Device

MIC-3714 User Manual

Step 1: To install the I/O device for your card, you must first run the Advantech Device Manager program by accessing:

Start/Programs/Advantech eAutomation/Device Manager/Advantech Device Manager

Step 2: You can then view the device(s) already installed on your system (if any) in the Installed Devices list box. Since you haven't installed any device yet, you might see a blank list such as the one below (Fig. 2-3).

Advantech Device Manager			
Your ePlatform Partner			
Advantech Device Manager			
Installed Devices:			
My Computer	Setup		
	<u>T</u> est		
	Remove		
	Close		
Supported Devices:			
Wulisted Boards for Direct I/O Access Advantech Simulate Device	Add		
🗄 🗐 Advantech COM Devices	A <u>b</u> out		
Advantech MIC-3716	Turnent		
Advantech MIC-3723	import		
Advantech MIC-3753	Export		
Advantech MIC-3756			

Figure 2.3: The Device Manager Dialog Box

Step 3: After you have finished configuring the device, click OK and the device name will appear in the Installed Devices box as the following:

Figure 2.4: Device Names in the Device Box

Note: The device name "001:<MIC-3714 BoardID=9 I/O=e000H>" begins with a device number "001", which is specifically assigned to each card. The device number is passed to the driver to specify which device you wish to control.

If you want to test the card device further, go right to the next section on the Device Testing. You can also find the rich examples on the CD-ROM to speed up your Programming.

2.5 Device Testing

Following through the Setup and Configuration procedures to the last step described in the previous section, you can now proceed to test the device by clicking the Test button on the Device Manager dialog box. A Device Test dialog box will appear accordingly (Fig. 2-5):

🔉 Advantech Device Test - MIC-3714 BoardID=9 I/O=e000H				
<u>A</u> nalog input	Analog output	Digital input	Digital output	Cou <u>n</u> ter
Channel No. Inpu 0 +/- 5.1 1 +/- 5.1 2 +/- 5.1 3 +/- 5.1	it range: DV V DV V DV V DV V	Analog input readir -0.0378507 -0.0183147 -0.0720388 -0.0256407	ng: Channel mode 4 single ended char Sampling period: 1000	nnels ms
			<u>C</u> hange device	E <u>x</u> it

Figure 2.5: Device Test Dialog Box

On the Device Test dialog box, users are free to test various functions of MIC-3714 on the Analog input tabs, functions on the other tabs are not supported for this model.

Testing Analog Input Function

Make sure the Analog Input tab is selected, otherwise, click on the Analog Input tab to bring it up to front of the screen. Select the input range for each channel in the Input range drop-down boxes. Configure the Sampling period on the scroll bar to adjust the sampling rate, the Analog input reading windows will show the readings of all the four channels accordingly. Scroll the Sampling period scroll bar freely to test any sampling rate you want. When the device is fully tested, click Exit button to end the testing procedure.

🔏 Advantech Device Test - MIC-3714 BoardID=9 I/O=e000H				
<u>Analog input</u> Ana	og <u>o</u> utput Digital <u>i</u> nput	Digital output Cou <u>n</u> ter		
Channel No. Input rang 0 +/- 5.0V 1 +/- 5.0V 2 +/- 5.0V	e: Analog input read .0.0378507 .0.0183147 .0.0720388	ting: Channel mode 4 single ended channels Sampling period: 1000 ms		
3 +/- 5.0V	-0.0256407	•		
		Change device Exit		

Figure 2.6: Analog Input Tab

Signal Connections

Sections include:

- Signal Connections
- Overview
- Switch and Jumper Settings
- Software Overview
- Device Drivers Roadmap
- Accesories

Chapter 3 Signal Connections

Maintaining proper signal connections is one of the most important factors to ensure that your application system is sending and receiving data correctly. A good signal connection can avoid unnecessary and costly damage to your PC and other hardware devices. This chapter provides useful information about how to connect input and output signals to the MIC-3714 via the I/O connector.

3.1 Overview

Maintaining signal connections is one of the most important factors in ensuring that your application system is sending and receiving data correctly. A good signal connection can avoid unnecessary and costly damage to your PC and other hardware devices. This chapter provides useful information about how to connect input and output signals to the MIC-3714 via the I/O connector.

3.2 Switch and Jumper Settings

The MIC-3714 card has one function switch and five jumper settings.

Figure 3.1: Connector, Jumper, and Switch Locations

Board ID setting (SW1)				
ID3	ID2	ID1	ID0	Board ID
1	1	1	1	0
1	1	1	0	1
1	1	0	1	2
1	1	0	0	3
1	0	1	1	4
1	0	1	0	5
1	0	0	1	6
1	0	0	0	7
0	1	1	1	8
0	1	1	0	9
0	1	0	1	10
0	1	0	0	11
0	0	1	1	12
0	0	1	0	13
0	0	0	1	14
0	0	0	0	15

Note: On: 1, Off: 0

Figure 3.2: Power on Config. After Hot Reset (JP1) User can use the JP1 to set the hot reset type of MIC-3714.

JP1	Power-on configuration after hot reset		
	Keep the I/O configuration while hot reset.		
	Clear the I/O configuration to default while hot reset.		

Input terminator select (JP2 to JP5)

User can use the JP2 to JP5 to set input terminator value for each AI channel CH0 to CH3, respectively.

JP2, JP3, JP4, JP5	Input terminator select
	50Ω
	1ΜΩ
	High Impedance

3.3 Signal Connections

CN1 Pin Assignment

Fig. 3-2 shows the pin assignments for the PS-2 connector and the DB-9 connector on the cable.

PS2 To DB-9 Cable Connector

Figure 3.3: I/O Connector Pin Assignment

- J1 to J4 BNC are the AI input connectors.
- J1 is for AI0, J2 is for AI1, J3 is for AI2 and J4 is for AI3.

Principles of Operation

Sections include:

- Analog Input Range and Gains
- Analog Input Acquisition Mode
- A/D Sample Clock Sources
- Trigger Sources
- Analog Input Data Format

Chapter 4 Principles of Operation

This chapter describes the following features of the MIC-3714 card:

- · Analog input ranges and gains
- · Analog input acquisition modes
- A/D sample clock sources
- Trigger sources
- Analog Input Data Format

4.1 Analog Input Range and Gains

Each channel on the MIC-3714 can measure bipolar analog input signals ranging within \pm 5 V FSR, and can be set up with different input ranges respectively. The sampling rate can be up to 30 MS/s.

MIC-3714 also provides various gain levels that are programmable per channel. Table 4-1 lists the effective ranges supported by the MIC-3714 using these gains.

Table 4.1: Gains and Analog Input Range		
Gain	Analog Input Range	
1	±5 V	
2	±2.5 V	
5	±1 V	
10	±0.5 V	

For each channel, choose the gain level that provides most optimal range that can accommodate the signal range you have to measure. For detailed information, please refer to Appendix C.4 AI Range Control.

4.2 Analog Input Acquisition Modes

The MIC-3714 can acquire data in single value, pacer, post-trigger, delay-trigger, about-trigger and pre-trigger acquisition modes. These analog input acquisition modes are described in more details in the follow-ing:

Single Value Acquisition Mode

The single value acquisition mode is the simplest way to acquire data. Once the software issues a trigger command, the A/D converter will con-
vert one data, and return it immediately. User can check the A/D FIFO status (Read BASE+10, 12) to make sure if the data is ready to be received. For detailed information, please refer to Appendix C.8 FIFO Control, Appendix C.9 FIFO Status, Appendix C.10 FIFO for Progarmmable Flag.

Pacer Acquisition Mode

Use pacer acquisition mode to acquire data if you want to accurately control the time interval between conversions of individual channels in a scan. A/D conversion clock comes from A/D counter or external clock source on connector. A/D conversion starts when the first clock signal comes in, and will not stop if the clock is still continuously sending into it. Conversion data is put into the A/D FIFO. For high-speed data acquisition, you have to use the DMA data transfer for analog input to prevent data loss.

Post-Trigger Acquisition Mode

Post-trigger allows you to acquire data based on a trigger event. Posttrigger acquisition starts when the MIC-3714 detects the trigger event and stops when the preset number of post-trigger samples has been acquired or when you stop the operation. This trigger mode must work with the DMA data transfer mode enabled. Use post-trigger acquisition mode when you want to acquire data when a post-trigger event occurs. Please specify the following parameters when using software in post-trigger acquisition mode:

- Set to Post-Trigger Acquisition Mode
- The A/D sample clock source and sampling rate
- The trigger source
- The acquired sample number N

Figure 4.1: Post-Trigger Acquisition Mode

Delay Trigger Acquisition Mode

In delay trigger mode, data acquisition will be activated after a preset delay number of sample has been taken after the trigger event. The delay number of sample ranges from 2 to 65535 as defined in DMA counter.

Delay-trigger acquisition starts when the MIC-3714 detects the trigger event and stops when the specified number of A/D samples has been acquired or when you stop the operation. This triggering mode must work with the DMA data transfer mode enabled Please specify the following parameters when using software in delay trigger mode:

- Set to Delay-Trigger Acquisition Mode
- The sample clock source and sampling rate
- The trigger source
- The acquired sample number N
- The sample number M delays after the delay-trigger event happened

Figure 4.2: Delay-Trigger Acquisition Mode

About Trigger Acquisition Mode

Use about-trigger acquisition mode when you want to acquire data both before and after a specific trigger event occurs. This operation is equivalent to doing both a pre-trigger and a post-trigger acquisition. When using software, please specify the following parameters, when using software in About-Trigger acquisition mode:

- Set to About-Trigger Acquisition Mode
- The sample clock source and sample rate
- The trigger source
- The total acquired sample number N
- The specific sample number M after the trigger event. The range of preset sample number is from 2 to 65536 samples.

In about-trigger mode, users must first designate the size of the allocated memory and the amount of samples to be snatched after the trigger event happens. The about-trigger acquisition starts when the first clock signal comes in. Once a trigger event happens, the on-going data acquisition will continue until the designated amount of samples have been reached. When the MIC-3714 detects the selected about trigger event, the card keeps acquiring the preset number of samples, and kept the total number of samples on the FIFO.

Total Acquired sample number: N

Figure 4.3: About-Trigger Acquisition Mode

Pre-Trigger Acquisition Mode

Pre-Trigger mode is a particular application of about-trigger mode. Use pre-trigger acquisition mode when you want to acquire data before a specific trigger event occurs. Pre-trigger acquisition starts when you start the operation and stops when the trigger event happens. Then the specific number of samples will be reversed in the FIFO before the pre-trigger event occurred. Please specify the following parameters, when using software in Pre-trigger acquisition mode:

- Set to Pre-Trigger Acquisition Mode
- The sample clock source and sample rate
- The trigger source
- Assume the total acquired sample number is N, then set the total sample number to be N+2.

Figure 4.4: Pre-Trigger Acquisition Mode

4.3 A/D Sample Clock Sources

The MIC-3714 can adopt both internal and external clock sources for pacer, post-trigger, delay-trigger, about-trigger acquisition modes:

- Internal A/D sample clock with 8-bit Counter
- External A/D sample clock that is connected to either the EXT-CLK0 (the differential clock source) or the EXT_CLK1 (the single ended clock source) on the ADAM-3909 screw terminal board.

The internal and both external A/D sample clocks are described in more details as the following.

Internal A/D Sample Clock

The internal A/D sample clock uses a 60 MHz time base. Conversions start on the rising edge of the counter output. You can use software to specify the clock source as internal and the sampling frequency to pace the operation. The minimum frequency is 234375 S/s, the maximum frequency is 30 MS/s. According to the sampling theory (Nyquist Theorem), you must specify a frequency that is at least twice as fast as the input's highest frequency component to achieve a valid sampling. For example, to accurately sample a 300 kHz signal, you have to specify sampling frequency of at least 600 kHz. This consideration can avoid an error condition often know as aliasing, in which high frequency input components appear erroneously as lower frequencies when sampling.

External A/D Sample Clock 0

The external sample clock 0 is a sine wave signal source which is converted to a TTL signal inside the MIC-3714. This signal is AC coupled. The input impedance of external clock 0 is 50 ohms and the input level is 2 volts peak-to-peak.

Please note that the frequency of the external clock is the system clock. The maximum A/D clock frequency is half of the system clock.

External A/D Sample Clock 1

The external sample clock 1 is a digital clock. The input impedance is 50 ohms and the input level should be $2.4V \sim 5V$ into the 50-ohm load. This signal is DC coupled.

Figure 4.5: MIC-3714 Sample Clock Sources

4.4 Trigger Sources

The MIC-3714 supports the following trigger sources for post-, delay-, about- and pre-trigger acquisition modes:

- Software trigger,
- External digital (TTL) trigger, and
- Analog threshold trigger.

With MIC-3714, user can define the type of trigger source as rising-edge or falling-edge. These following sections describe these trigger sources in more detail.

Software Trigger

A software trigger event occurs when you start the analog input operation (the computer issues a write to the board to begin acquisitions). When you write the value to analog input trigger flag TRGF on Write BASE+Eh to produce either a rising-edge or falling-edge trigger, depending upon the trigger source type you choose. This edge will then act as an A/D trigger event.

For detailed information, please refer to Appendix C.7 Trigger Mode and Source.

External Digital (TTL) Trigger

For analog input operations, an external digital trigger event occurs when the MIC-3714 detects either a rising or falling edge on the External A/D TTL trigger input signal from screw terminal EXT_TRIG on the ADAM-3909 screw terminal board. The trigger signal is TTL-compatible.

Analog Threshold Trigger

For analog input operations, an analog trigger event occurs when the MIC-3714 detects a transition from above a threshold level to below a threshold level (falling edge), or a transition from below a threshold level to above a threshold level (rising edge). User should connect the analog signals from the external device to one of the four BNC source connectors. Which one of the four sources is selected as the trigger source can be defined or identified by writing to or reading from the flags from TS0 to TS2 of Write/Read BASE+Eh. On the MIC-3714, the analog trigger threshold voltage level is set using a dedicated 8-bit DAC; you can write or read the flags from AT0 to AT7 on Write/Read BASE+24h to define or identify the analog trigger threshold voltage level. Please also refer to the Appendix C.14 Analog Trigger Threshold Voltage for more details.

1 a	ble 4.2: A	nalog Input Data Format
A/D Co	de	Mapping Voltage
Hex.	Dec.	
000h	0d	-FS
7FFh	2047d	-1 LSB
800h	2048d	0
FFFh	4095d	FS-1 LSB
1LSB		FS/2048

4.5 Analog Input Data Format

Table 4 3. Various Input Voltage Ranges

Gain	Range	FS
1	±5	5
2	±2.5	2.5
5	±1	1
10	±0.5	0.5

Calibration

Chapter 5 Calibration

This chapter offers you a brief guide to the calibration procedure. The MIC-3714 has been well calibrated at the factory for initial use. Users are not necessary to calibrate the MIC-3714 in normal conditions. However, if some other conditions that the users have to calibrate the MIC-3714, then they can follow the procedure listed below to perform the necessary calibration.

To perform an effective calibration, the user has to prepare a standard 4-1/2 digits resolution, stable and low-noise DC voltage source. It is important that the accuracy of the device will depend on the accuracy of the DC source.

Calibration Procedure

Step 1: Click the Setup button on the Advantech Device Manager window (Fig.5-1) to launch the MIC-3714 Device Setting window (Fig.5-2).

Figure 5.1: Setup Button launches the Device Setting

Step 2: Select the input range of the channel which you want to calibrate.

Step 3: Click the Calibration button to start the calibration process. The Calibration Wizard window will pop up.

Note: Each calibration process can calibrate only one channel and one input range at a time.

MIC-3714 Device Setting	X
Base Address (Hex.) E800 Internation Auto Calibration CH0 +/- 5.0V Calibration CH1 +/- 5.0V Calibration CH2 +/- 5.0V Calibration CH3 +/- 5.0V Calibration	arrupt 18 Advanced Setting Maximal allowable PCI bus bandwidth 100 MBytes/Sec. Maximal allowable interrupt frequency 10000 Hz Maximal buffer for DMA transfer 16 MBytes Defaults
	ncel <u>A</u> bout

Figure 5.2: Calibration Button launches Calibration

Step 4: Follow the instruction of Calibration Wizard to input a correct DC voltage as a reference and click the Next button to proceed to the next step.

Calibration Wizard	X
This wizard will help you calibrate your MIC-3714 device.	
Condition : Channel 0 in range +/- 5.0 V	
C Offset Calibration	
Please connect a reference voltage of 0.0 V in channel 0.	
Note : The calibration will fail if the voltage is invalid.	
Cance	

Figure 5.3: Start-up Window for Offset Calibration

Step 5: Click the Start button to start the Offset Calibration. Note that the Status will indicate Unknown as default at the beginning.

Adjust (0~255)		ujust.	Ctobus
Unknow	2050.1101	0.0061	Unknov
Note : If "Fail" pleas	Start		

Figure 5.4: Adjustment of Offset Calibration

Step 6: If the reference DC voltage source and the wiring are both correct, the calibration will proceed automatically after the Start button is clicked. When the offset calibration is completed, the Status will indicate Succeeded, then click the Next button to proceed to the next step.

This action will take	a few time to a	djust.	
Adjust (0~255)	Hex (Ave.)	Voltage	Status
96	2047.9399	-0.0012	Success
Note : If "Fail" pleas	e check input v	ultage.	

Figure 5.5: Offset Calibration Success

Step 7: Once the Status indicates Failed, please check if both the wiring and the input voltage are correct. When finished checking, click the Start button again to restart the procedure, or click the Cancel button to stop the calibration.

This action will take	a few time to a	djust.	
Adjust (0~255)	Hex (Ave.)	Voltage	Status
255	0.0000	-5.0000	Fa
Note : If "Eail" pleas	e check input v		

Figure 5.6: Offset Calibration Failed

Step 7: If the offset calibration is completed, then it is going to proceed to the Gain Calibration. The steps of gain calibration are quite similar to those of the offset calibration. Follow the instructions of the Calibration Wizard to input a correct DC voltage and click the Next button to proceed.

Calibration ¥	/izard	×
Condition :	Channel 0 in range +/- 5.0 V	
Gain Calit	Please connect a reference voltage of +4.9987 V in	
	channel 0. Note : The calibration will fail if the voltage is invalid.	
	Next > Cancel	

Figure 5.7: Start-up Window for Gain Calibration

Step 8: Click the Start button to start gain calibration. Note that the Status will indicate Unknown as default at the beginning.

his action will take	a few time to ad	djust.	
Adjust (U~255)	Hex [Ave.]	Voltage	Status
Unknow	2047.0600	-0.0012	Unknov
	Start		

Figure 5.8: Adjustment Process for Gain Calibration

Step 9: When the gain calibration is completed then click the Next button to proceed.

his action will take	a few time to a	djust.	
Adjust (0~255)	Hex (Ave.)	Voltage	Status
96	4094.0400	4.9976	Succes
	otan		

Figure 5.9: Gain Calibration Success

Step 9: Once the Status indicates Failed, please check if both the wiring and the input voltage are correct. When finished checking, click the Start button again to restart the procedure, or click the Cancel button to stop the calibration.

Adjust (0~255)	Hex (Ave)	Voltage	Status
255	2048.1201	0.0012	Fai
	Start		

Figure 5.10: Gain Calibration Failed

Step 10: When the current channel is calibrated, click the Finish button to end the procedure. You can proceed to Step 3 to select another channel for calibration, and repeat from Step 4 to Step 9, until the rest of the channels are all calibrated one after one.

		and the second	orardo
Unknow	4094.4299	4.9976	Success

Figure 5.11: Calibration Procedure Completed

Specifications

Appendix A Specifications

Table A.1: Analog Input											
Channels	4 single-ended	l analog i	nput	cha	nnels						
Resolution	12-bit			FIF	O Size	32K lo	ocations				
Max. Sampling Rate ¹	Up to 30MHz ¹										
Common Mode Voltage	±11 V max. (op	perationa	I)								
Input Range and	Gain		1		2	5	10				
Gain List	Range		±5V		±2.5V	±1V	±0.5V				
Drift	Gain		1		2	5	10				
	Zero (µV/°C)		200		100	40	20				
	Gain (ppm/°C)		±30		±30	±30	±30				
Small Signal	Gain		1		2	5	10				
Bandwidth for PGA	Gain12510Bandwidth (-3dB)7MHz7MHz7MHz7MHz $\pm 15 V$ Input Surge Protect30 Vp $50\Omega / 1M\Omega / \infty$ jumper selectable 100pFSoftware, pacer, post-trigger, pre-trigger, delay-trigger about-trigger										
Max. Input Voltage	(-3dB) z ±15 V Input Surge Protect 30 Vp-p 50Ω /1MΩ /∞ jumper selectable 100pF										
Input Impedance	(-3dB) z ±15 V Input Surge Protect 30 Vp-p 50Ω /1MΩ /∞ jumper selectable 100pF Software, pacer, post-trigger, pre-trigger, delay-trigger, about-trigger										
Trigger Mode	(-3dB) z ±15 V Input Surge Protect 30 Vp-p 50Ω /1MΩ /∞ jumper selectable 100pF Software, pacer, post-trigger, pre-trigger, delay-trigger, about-trigger										
Accuracy	(-3dB) z ±15 V Input Surge Protect 30 Vp-p 50Ω /1MΩ /∞ jumper selectable 100pF Software, pacer, post-trigger, pre-trigger, delay-trigger, about-trigger DC DNLE: ±1LSB (No Missing Codes:12 Bits Guarar teed)										
		INLE: ±2	LSB								
		Offset error	Adju	istał	ole to ±1	LSB					
		Gain error	Adju	istał	ole to ±1	LSB					
	AC	SINAD: ENOB: THD: -7	S/(N 10.33 1 dB	+D) 3bits	: 64 dB						
External Clock 1	Logic level	TTL (Lo	w: 0.	8V I	nax. Hig	h: 2.0۱	/ min.)				
	Input impedance	50 ohm	S								
	Input coupled	DC									
	Frequency	Up to 10) MH	Z							
External Clock 0	Logic level	5.0V pe	ak to	pea	ak sin wa	ave					
	Input impedance	Hi Z									
	Input coupled	AC									
	Frequency	Up to 10) MH	Z							

External Trigger 0	Logic level	TTL (Low: 0.8V max. High: 2.0V min.)
	Input impedance	Hi Z
	Input coupled	AC
	Frequency	Up to 10 MHz
External Analog	Range	By analog input range
Trigger Input	Resolution	8-bit
	Frequency	Up to 1 MHz

Table A.2: General		
I/O Connector Type	4 BNC connector for A 1 PS2 connector for ex	l kt. clock and trigger
Dimensions	160mm x 100mm (6.3"	' x 3.9")
Power Consumption	Typical	+5 V @ 850 mA ; +12 V @ 600 mA
	Max.	+5 V @ 1 A ; +12 V @ 700m A
Temperature	Operation	0~+70°C(32~158°F)
•	Storage	-20~+85°C(-4~185°F)
Relative Humidity	5~95%RH non-conden	using (refer to IEC 68-2-3)
Certification	CE certified	

Note¹: 30 MHz is only for FIFO depth (32K). Continuous acquisition depends on platform performance.

MIC-3714 User Manual

Block Diagram

Appendix B Block Diagram

MIC-3714 User Manual

Register Structure & Format

Appendix C Register Structure & Format

C.1 Overview

The MIC-3714 is delivered with an easy-to-use 32-bit DLL driver for user programming under the Windows 98/2000/XP operating systems. We advise users to program the MIC-3714 using the 32-bit DLL driver provided by Advantech to avoid the complexity of low-level programming by register.

The most important consideration in programming the MIC-3714 at register level is to understand the function of the card's registers. The information in the following sections is provided only for users who would like to do their own low-level programming.

C.2 Register Format

The register format is the basis to control the MIC-3714.

There are some rules for programmer's reference:

1. All registers are 32-bit format. Please use the DWORD command in your own software.

2. Some registers are used only for write or read.

3. Some registers can support write and read back, they usually use the same name.

4. Some registers could write any value to complete a command.

5. In general, read only register is called status register, write only register is called control register.

6. Some registers are very similar, usually denote as a group. For example, A4, A3, A2, A1, A0 usually denote as A4: A0.

7. In this document, 1Fh means hexadecimal number 1F.

Table C-1 shows the function of each register of the MIC-3714 or driver and its address relative to the card's base address.

		Eh				Ch				Ah				8h			6h			4h				2h			^{0}h	Add	Bas
R		¥		R		×		R		W		R		×		R	8		R	¥		R		W		R	W	ress	e
TRGF DMA_TCF	TRGF DMA_TCF	Trigger Mode and Source Reg				Clock Source and Divider Reg				A/D Converter Enable Registe				AI Range Control Register	TRGF OV G1 G0 A	AI Channel 3 Data	AI Channel 3 Single Value Ac	TRGF OV G1 G0 A	AI Channel 2 Data	AI Channel 2 Single Value Ac	TRGF OV G1 G0 A	AI Channel 1 Data	(AI Channel 1 Single Value Ac	TRGF OV G1 G0 A	AI Channel 0 Data	AI Channel 0 Single Value Ac	15 14 13 12 1	MIC-3714 Register Format
		ister	CKS1		CKS1	ister)T					D11 AD10 AD9		quisition	D11 AD10 AD9		quisition	D11 AD10 AD9			quisition	D11 AD10 AD9		quisition	1 10 9	
TSE	TSE		CKS0 DIV7		CKS0 DIV7						CH3_		CH3		AD8 AD7			AD8 AD7			AD8 AD7				AD8 AD7			7 8	
TS2	TS2		DIV6		DIV6						G1 CH3_G		G1 CH3 G		AD6			AD6			AD6				AD6			6	
TS1	TS1		DIV5		DIV5						0 CH2_G1		0 CH2 G1		AD5			AD5			AD5				AD5			5	
TS0	TS0		DIV4		DIV4						$CH2_G0$		$CH2_G0$		AD4			AD4			AD4				AD4			4	
			DIV3		DIV3		CH3		CH3		CH1_G1		$CH1_G1$		AD3			AD3			AD3				AD3			5	
TM2	TM2		DIV2		DIV2		CH2		CH2		CH1_G0		CH1_G0		AD2			AD2			AD2				AD2			2	
TM1	TM1		DIV1		DIV1		CH1		CH1		CH0_G1		CH0_G1		AD1			AD1			AD1				AD1			1	
TM0	TM0		DIV0		DIV0		CH0		CH0		$CH0^{-}G0$		CH0_G0		AD0			AD0			AD0				AD0			0	

Table C.1: MIC-3714 Register Format (Part 1)

Table C.2: MIC-3714 Register Format (Part 2)

	1 Eh				1Ch				1 Ah				18h				16h				14h				12h				10h	Aac	Bas
 R	W		R		×		R		W		R		W		R		W		R		¥		R		×		R		W	Iress	-e
	Rest D	CN15		CN15	DMA (FIFO 3	1	FIFO 3		FIFO 2		FIFO 2		FIFO 1		FIFO 1	ſ	FIFO 0	ſ	FIFO 0		FIFO S		FIFO C		FIFO S		FIFO C	15	MIC-3
	MA Co	CN14		CN14	Counter	PF14	Progra	PF14	Progra	PF14	Progra	PF14	Progra	PF14	Progra	PF14	Progra	PF14	Progra	PF14	Progra		tatus R		ontrol		tatus R		ontrol	14	714 Reg
	unter	CN13		CN13	Register	PF13	mmable Fla	PF13	mmable Fla	PF13 FP12	mmable Fla	PF13 FP12	mmable Fla	PF13	mmable Fla	FIFO3_AF	egister		Register	FIFO1_AF	egister		Register	13	gister Forma						
		CN12		CN12		FP12	g Register	FP12	g Register		g Register		g Register	FP12	g Register	FIFO3_AE				FIFO1_AE				12	t						
		CN11		CN11		PF11		PF11		PF11		PF11		PF11		PF11		PF11		PF11										11	
		CN10		CN10		PF10		PF10		PF10		PF10		PF10		PF10		PF10		PF10		FIFO3_FF				FIFO1_FF				10	
		CN9		CN9		PF9		PF9		PF9		PF9		PF9		PF9		PF9		PF9		FIFO3_HI		FRST3		FIFO1_HI		FRST1		6	
		CN8		CN8		PF8		PF8		PF8		PF8		PF8		PF8		PF8		PF8		FIFO3_EF		FCLR3		FIFO1_EF		FCLR1		8	
		CN7		CN7		PF7		PF7		PF7		PF7		PF7		PF7		PF7		PF7										7	
		CN6		CN6		PF6		PF6		PF6		PF6		PF6		PF6		PF6		PF6										9	
		CN5		CN5		PF5		PF5		PF5		PF5		PF5		PF5		PF5		PF5		FIFO2_AF				FIFO0_AF				5	
		CN4		CN4		PF4		PF4		PF4		PF4		PF4		PF4		PF4		PF4		FIFO2_A				FIFO0_A				4	
		CN3		CN3		PF3		PF3		PF3		PF3		PF3		PF3		PF3		PF3		[1]				[1]				з	
		CN2		CN2		PF2		PF2		PF2		PF2		PF2		PF2		PF2		PF2		FIFO2_F				FIFO0_F				2	
		CN1		CN1		PF1		PF1		PF1		PF1		PF1		PF1		PF1		PF1		F FIFO2_H		FRST2		F FIFO0_H		FRST0		1	
		CN0		CN0		PF0		PF0		PF0		PF0		PF0		PF0		PF0		PF0		IF FIFO2_EF		FCLR2		IF FIFO0_EF		FCLR0		0	

Base		MIC-	3714]	Registe	er Forn	nat											
Addr + HE	ess X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
20h	W	Interr	upt Co	ontrol I	Registe	er											
		INT E							DM A_T C	FIF O3_ AF	FIF O3_ HF	FIF O2_ AF	FIF O2_ HF	FIF O1_ AF	FIF O1_ HF	FIF O0_ AF	FIF O0_ HF
	R								e								
		INT F							INT F8	INT F7	INT F6	INT F5	INT F4	INT F3	INT F2	INT F1	INT F0
22h	w	Clear	Interr	unt					10	1 /	10	15	• •	15	12		10
		cieui		up:		1											
	R	N/A				<u> </u>											
				1	1	1	1	1	1	1	1	1	1	1	1	1	1
24h	W	Analo	og Trig	gger Th	reshol	d vo	ltage l	Regist	er								
										AT7	AT6	AT5	AT4	AT3	AT2	AT1	AT0
	R	Analo	og Trig	gger Th	reshol	d vo	ltage 1	Regist	er								
										AT7	AT6	AT5	AT4	AT3	AT2	AT1	AT0
26h	W	N/A															
					1	1	1	1	1	1	1	1	1	1	1	1	
	R	N/A					1										
28h	W	Calib	ration	Comm	and R	egist	er										
				CG1	CG0	Х	CM 2	CM 1	CM 0	CD 7	CD 6	CD 5	CD 4	CD 3	CD 2	CD 1	CD 0
	R					I											
				CG 1	CG0	C B U S Y	CM 2	CM 1	CM 0	CD 7	CD 6	CD 5	CD 4	CD 3	CD 2	CD 1	CD 0
2Ah	W																
	R																
2Ch	W	Board	d ID	_				_	_		_			_			_
	R						-										
														BID 3	BID 2	BID 1	BID 0
2Eh	W			·	·		·			·	-	·	·		·	·	
	R																

Table C.3: MIC-3714 Register Format (Part 3)

									0								
Base Addr	ess	MIC	3714	Regist	ter Foi	rmat											
TIL	л	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
30h	W	Reset	t start	read c	hanne	l to Cl	HO										
	R	AD C	Channe	el n D.	ATA												
		TR GF	ov	G1	G0	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0
32h	W	N/A															
	R	AD (Channe	el n+1	DATA	A											
		TR GF	OV	G1	G0	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0
34h	W	DMA	Requ	iest se	lector												
																	DS0
	R		-	-													

Table C.4: MIC-3714 Register Format (Part 4)

C.3 A/D SW Trigger

In single value acquisition mode (SW trigger), the A/D converter will convert one sample when you write to the register Write BASE+0, 2, 4, 6 with any value. User can check the A/D FIFO status (FIFOn_FE) to make sure if the data is ready to be received.

Base Addr	ess	MIC	-3714	Regist	ter Foi	mat	U		0								
+ HE	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0h	W	AI C	hanne	l 0 Sin	gle Va	lue A	cquisi	tion									
	R	AI C	hanne	l 0 Da	ta												
		TR GF	ov	G1	G0	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0
2h	W	AI C	hanne	l 1 Sin	gle Va	lue A	cquisi	tion						•	•		
	R	AI C	hanne	l 1 Da	ta												
		TR GF	ov	G1	G0	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0
4h	W	AI C	hanne	l 2 Sin	gle Va	lue A	cquisi	tion									
	R	AI C	hanne	l 2 Da	ta												
		TR GF	ov	G1	G0	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0
6h	W	AI C	hanne	l 3 Sin	gle Va	lue A	cquisi	tion									
	R	AI C	hanne	l 3 Da	ta							-					-
		TR GF	ov	G1	G0	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0

Table C.5: Register for Single Value Acquisition

AD11: AD0 12 bits Data of A/D Conversion

- AD0 The least significant bit (LSB) of A/D data.
- AD11 The most significant bit (MSB) of A/D data.

G1: G0 Range Code

These 2 bits indicate the input range of the data.

G1	G0	Input range
0	0	-5 to +5V
0	1	-2.5 to +2.5V
1	0	-1 to +1V
1	1	-0.5 to +0.5V

OV Over Range Flag

This bit indicates whether the input voltage is over range or not. Read 1 means over range.

TRGF Trigger Flag

The trigger flag indicates whether a trigger event has happened during A/ D conversion process.

C.4 AI Range Control

						,			~ a -	· · · · ·		.9.					
Base Add	ress	MIC	-3714	Reg	ster I	Forma	ıt										
+ HI	EX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
8h	W	AI R	ange	Conti	ol Re	egiste	r										
										CH 3 G1	CH 3 G0	CH 2 G1	CH 2 G0	CH 1 G1	CH 1 G0	CH 0 G1	CH 0 G0
	R																
										CH 3 GĪ	CH 3 G0	CH 2 G1	CH 2 G0	CH 1 G1	CH 1 G0	CH 0 G1	CH 0 G0

Table C.6: Register for Analog Input Range Control

Analog Input Range Selector

These registers are used to select the analog input range for each channel.

CHn_G1	CHn_G0	Input range
0	0	-5 to +5 V
0	1	-2.5 to +2.5 V
1	0	-1 to +1 V
1	1	-0.5 to +0.5 V

 $(n = 0 \sim 3)$

C.5 A/D Converter Enable

Table C.7: Register for A/D Converter Enable

						-	_										
Base Addr	ess	MIC	-3714	Regi	ster Fo	ormat											
+ HE	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ah	W	A/D	Conv	erter l	Enable	Regi	ster										
														CH 3	CH 2	CH 1	CH 0
	R																
														CH 3	CH 2	CH 1	CH 0

CH3, CH2, CH1, CH0 A/D Converter Enable bit

These bits control the A/D converter working. Write 0 will disable the A/D, 1 enable. They could be read back for check.

Table C.8: Register for Clock Source and Divider

DIV7: DIV0 **Clock Divider**

When select the internal clock source (60MHz) the clock will pre-divide by the clock divider. The divider is 8-bit wide, so it could divide from 2 to 256.

DIV7: DIV0	Divide value
00h	N/A
01h	divide by 2
02h	divide by 3
FEh	divide by 255
FFh	divide by 256

Clock Source Selector CKS1: CKS0

These 2 bits select the clock source feed to the A/D converters.

CKS1	CKS0	Clock source
0	0	Internal clock 60MHz
0	1	External clock 0
1	0	External clock 1
1	1	Off

Table C.9: Register for Trigger Mode and Source Particular

TM2: TM0 Trigger Mode Selector

There are 5 trigger modes for MIC-3714. Please refer to the operation theorem for more information.

TM2	TM1	TM0	Meaning
0	0	0	Single value acquisition mode (SW trigger)
0	0	1	Pacer acquisition mode
0	1	0	Post-trigger acquisition mode
0	1	1	Delay-trigger acquisition mode
1	0	0	About-trigger acquisition mode
1	0	1	N/A
1	1	0	N/A
1	1	1	N/A

TS2: TS0

TS2	TS1	TS0	Meaning
0	0	0	Analog input CH0
0	0	1	Analog input CH1
0	1	0	Analog input CH2
0	1	1	Analog input CH3
1	0	0	Digital trigger input
1	0	1	N/A
1	1	0	N/A
1	1	1	N/A

TSE Trigger Edge Selector:

Rising edge trigger Falling edge trigger

DMA_TCF DMA Counter Terminal Count Flag

DMA counter is not terminal count

DMA counter is terminal count

TRGF Trigger Flag

Trigger not occurred Trigger occurred

Table C.10: Register for FIFO Control

FCLRn (n = $0 \sim 3$) **FIFO Clear Register**

Write 1 to this bit to clear FIFO data.

FRSTn ($n = 0 \sim 3$) **FIFO Reset Register**

Write 1 to this bit to clear FIFO data and reset the AE and AF flag position to 7FH.

C.9 FIFO Status

	Table C.11: Register for FIFO Status																
Base Address		MIC	MIC-3714 Register Format														
+ HE	Х	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
10h	R	FIFO Status Register															
				FIF O1_ AF	FIF O1_ AE		FIF O1_ FF	FIF O1_ HF	FIF O1_ EF			FIF O0_ AF	FIF O0_ AE		FIF O0_ FF	FIF O0_ HF	FIF O0_ EF
12h	R	FIFC) Stat	us Reg	ister												
				FIF O3_ AF	FIF O3_ AE		FIF O3_ FF	FIF O3_ HF	FIF O3_ EF			FIF O2_ AF	FIF O2_ AE		FIF O2_ FF	FIF O2_ HF	FIF O2_ EF

FIFOn EF $(n = 0 \sim 3)$ **FIFO Empty Flag** FIFO is empty 1 0 FIFO is not empty FIFOn HF $(n = 0 \sim 3)$ **FIFO Half Full Flag** 1 FIFO is half full 0 FIFO is not half full FIFOn FF ($n = 0 \sim 3$) **FIFO Full Flag** FIFO is full 1 0 FIFO is not full FIFOn AE $(n = 0 \sim 3)$ **FIFO Almost Empty Flag** FIFO is almost empty 0 FIFO is not almost empty FIFOn AF $(n = 0 \sim 3)$ **FIFO Almost Full Flag**

1 FIFO is almost full

1

0 FIFO is not almost full

Base Address		MI	C-3714	Register F	ormat												
+ HE	Х	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
14h	W	V FIFO 0 Programmable Flag Register															
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
	R	FIFO 0 Programmable Flag Register															
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
16h	W	FII	O 1 Pro	grammable	e Flag I	Registe	r										
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
	R	FII	FO 1 Pro	grammable	e Flag I	Registe	r		÷			÷			÷	-	÷
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
18h	W	FII	O 2 Pro	grammabl	e Flag I	Registe	r		-			-			-		-
			PF14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
	R	FII	FO 2 Pro	grammable	e Flag I	Registe	r	_	_	_	_	_	_	_	_	_	_
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
1Ah	W	FII	O 3 Pro	grammabl	Flag	Registe	er										
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
	R	FII	FO 3 Pro	grammable	e Flag I	Registe	r			_	_						
			PF 14	PF13	FP12	PF11	PF10	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

Table C.12: Register for FIFO Programmable Flag

PF14: PF0 FIFO n Programmable Flag Register (n = 0 ~3)

The FIFO on MIC-3714 is very powerful. It allow user to define the indicate flag in any depth. There are two flags could be defined: FIFO Almost Empty flag and FIFO Almost Full flag. To define these flags must follow the procedure:

First write is the Almost Empty flag offset count from the empty.

Second write is the Almost Full flag offset count from the full.

Read procedure is the same as write. Once set the offset, the value will keep until FIFO reset.

	Tuble C.15. Register for DMA Counter																
Base	200	MIC	MIC-3714 Register Format														
	.35 V	1.5															
\pm nc.	Λ	15	14	13	12	11	10	9	8	/	6	5	4	3	2	1	0
1Ch	W	DMA Counter Register															
		CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R																
		CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1Eh	Eh W Reset DMA Counter																

Table C.13: Register for DMA Counter

CN15: CN0 DMA counter register:

DMA counter is a16-bit counter designed for ABOUT and DELAY trigger mode only. Set the counter value for about trigger data counts after the trigger event. Also the value for delay trigger data counts after the trigger event.

Reset DMA Counter

Before start the DMA counter, write the BASE + 1Eh to reset the DMA counter.

Table C.14: Register for Interrupt Control/Flag

Interrupt Control Register

MIC-3714 provides 9 sources to generate the interrupt. Write 1 to enable the interrupt, write 0 to disable. The INTE is control the total interrupt.

FIFO0_HF	FIFO 0 Half Full
FIFO0_AF	FIFO 0 Almost Full
FIFO1_HF	FIFO 1 Half Full
FIFO1_AF	FIFO 1 Almost Full
FIFO2_HF	FIFO 2 Half Full
FIFO2_AF	FIFO 2 Almost Full
FIFO3_HF	FIFO 3 Half Full
FIFO3_AF	FIFO 3 Almost Full
DMA_TC	DMA counter Terminal Count
INTE	Total Interrupt Enable

Interrupt Flag

These bits correspond to the same bit number of the interrupt control register to indicate which interrupt occurred. Read 1 means interrupt occurred.

INTF0	FIFO 0 Half Full interrupt flag
INTF1	FIFO 0 Almost Full interrupt flag
INTF2	FIFO 1 Half Full interrupt flag
INTF3	FIFO 1 Almost Full interrupt flag
INTF4	FIFO 2 Half Full interrupt flag
INTF5	FIFO 2 Almost Full interrupt flag
INTF6	FIFO 3 Half Full interrupt flag
INTF7	FIFO 3 Almost Full interrupt flag
INTF8	DMA counter Terminal Count interrupt flag
INTF	Total Interrupt flag

C.13 Clear Interrupt

Table C.15: Register for Clear Interrupt

							_						-				
Base Addi	ress	MIC	MIC-3714 Register Format														
+ HE	ΞX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
22h	W	Clea	Clear Interrupt														

Clear Interrupt

Write any value to this address will clear interrupt. It will clear all flags to 0 if there is no any interrupt in coming.

Table C.16: Register for Analog Trigger Threshold Voltage

Base Addr	ess	MIC	-3714	Regis	ter Fo	ormat											
+ HE	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
24h	W	Anal	og Tri	gger]	Thresh	old v	oltage	Regis	ster								
										AT7	AT6	AT5	AT4	AT3	AT2	AT1	AT0
R Analog Trigger Threshold voltage Register																	
										AT7	AT6	AT5	AT4	AT3	AT2	AT1	AT0

AT7: AT0 Analog Trigger Threshold Voltage Register

These registers set the analog trigger threshold voltage level.

AT7: AT0	±0.5V	±1V	±2.5V	±5V
FFh	0.496	0.992	2.48	4.96
FEh	0.492	0.984	2.46	4.92
81h	0.004	0.008	0.02	0.04
80h	0	0	0	0
79h	-0.004	-0.008	-0.02	-0.04
01h	-0.496	-0.992	-2.48	-4.96
00h	-0.5	-1	-2.5	-5

Base Addr	ess	MIC-3714 Register Format															
+ HE	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
28h	W	Cali	bratic	on Co	mmar	id Re	giste	r									
			CG CG X C C C CD CD														
	R																
				CG 1	CG 0	CB US Y	C M2	C M1	C M0	CD 7	CD 6	CD 5	CD 4	CD 3	CD 2	CD 1	CD 0

Table C.17: Register for Calibration Command

CD7: CD0

Calibration Data

The value is form 00h to FFh.

CM2: CM0

Calibration Command Register

CM2	CM1	CM0	Meaning
0	0	0	Analog input CH0 offset adjustment
0	0	1	Analog input CH0 gain adjustment
0	1	0	Analog input CH1 offset adjustment
0	1	1	Analog input CH1 gain adjustment
1	0	0	Analog input CH2 offset adjustment
1	0	1	Analog input CH2 gain adjustment
1	1	0	Analog input CH3 offset adjustment
1	1	1	Analog input CH4 gain adjustment

G1: G0

Calibration Range Code

G1	G0	Input Range
0	0	-5 to +5 V
0	1	-2.5 to +2.5 V
1	0	-1 to +1 V
1	1	-0.5 to +0.5 V

CBUSY Calibration command busy flag

This bit indicates the calibration command is complete and ready for next command input.

				1 00		.10.	neg	isie	י וטנ	DU	uru.	īν					
Base Addr	ess	MIC-3714 Register Format															
+ HE	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2Ch	R	Boa	rd ID														
														BI	BI	BI	BI
														D3	D2	D1	D0

Table C.18: Register for Board ID

BID3: BID0 Board ID

Board ID selector value is from 0 to 15. Please refer to board ID switch setting.

C.17 Reset DMA Start Channel to CH0

Table C.19: Register for Reset DMA Start Channel to CH0

Base		MIC	MIC-3714 Register Format														
+ HE	X	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
30h	W	Rese	et DN	1A st	art ch	annel	l to C	CH0									

Reset DMA Start Channel to CH0

Write any value to BASE+30h to reset DMA transfer data from CH0. Before start DMA transfer, user has to reset the start channel to CH0. This only for four channels DMA data transfer.

			ivie	U. 2	<i>v.</i> n	egis	ier j	UI A	D	nur	inei	nD	11/1				
Base		MIC-3714 Register Format															
+ HE	ess X	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
30h	R	AD	D Channel n DATA														
		TR	OV	G1	G0	AD	AD	AD	AD	AD	AD	AD	AD	AD	AD	AD	AD
		GF				11	10	9	8	7	6	5	4	3	2	1	0
32h	R	AD	Chan	nel n	+1 D	ATA											
		TR	OV	G1	G0	AD	AD	AD	AD	AD	AD	AD	AD	AD	AD	AD	AD
		GF				11	10	9	8	7	6	5	4	3	2	1	0

 Table C.20: Register for AD Channel nDATA

AD Channel nDATA (n = 0 or 2)

BASE + 30, 32 are for four channels DMA data transfer. Data transfer will alternate from CH0 + CH1 to CH2 + CH3 automatically. The format is the same as BASE + 0, 2 or BASE + 4, 6. CH0 + CH1 is first 32-bit, CH2 + CH3 is the second and CH0 + CH1, ... and so on. User only want to transfer CH0 + CH1, please use BASE + 0, 2, transfer CH2 + CH3, please use BASE + 4, 6. About DMA data transfer, please refer to PCI9056 datasheet.

DMA data transfer support 1, 2 or 4 channels data acquisition.

For 1 channel data acquisition, only channel 0 or 2 is acceptable. For 2 channels data acquisition, only channel 0,1 or 2,3 is acceptable.

The DMA data transfer to memory format are list as below:

1. One channel CH0

Memory Address	D31	D16	D15	DO
N	CH0 data 1		CH0 data 0	
N+1	CH0 data 3		CH0 data 2	
N+2	CH0 data 5		CH0 data 4	
N+3	CH0 data 7		CH0 data 6	
•	•		:	

2. Two channel CH0 + CH1

Memory Address	D31	D16	D15	D0				
N	CH1 data 0		CH0 data 0					
N+1	CH1 data 1		CH0 data 1					
N+2	CH1 data 2		CH0 data 2					
N+3	CH1 data 3		CH0 data 3					
:	:		:					

3. Four channel CH0 + CH1 + CH2 + CH3

Memory Address	D31	D16	D15	D0					
N	CH1 data 0	•	CH0 data 0						
N+1	CH3 data 0		CH2 data 0						
N+2	CH1 data 1		CH0 data 1						
N+3	CH3 data 1		CH2 data 1						
•	:		:						

C.19 DMA Request Selector

Table C.21: Register for DMA Request Selector

Base		MIC-3714 Register Format															
Addre	255																
+ HEX		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
34h	W	DMA Request selector															
																	DS0

DS0

DMA Request Selector

This bit select the DMA request (hardware signal DREQ), user could use FIFO 0 flag or FIFO 2 flag to generate DREQ.

- 0 FIFO 0 flag
- 1 FIFO 2 flag

Note: When the user applies the single AI channel (channel 0), this bit should be set to 0. If user applied AI to channel 0 and channel 1, this bit should be set to 1. In the other words, if the user sets AI to channel 2 and channel 3, this bit will be set as 1. When the user applies the total 4 AI channels, this bit can be either 0 or 1.