The new DVP & PMC & CIQ series power supplies are the latest offering from Delta Electronics, the world's largest power supply manufacturer. The product offers a nominal output voltage of 24V, a wide temperature range from -20°C to +75°C and a minimum holdup time of 20ms. The state-of-the-art design is made to withstand harsh industrial environments. The rugged, ultra-compact case material is shock and vibration resistant according to IEC 60068-2. The power supply provides overvoltage, overload and thermal protection. The wide input voltage ranges from 85 to 264VAC (1 phase) and 320 ~ 576VAC (3 phase), and the multiple output terminals are for fast wiring and easy installation.

Easy Wiring
Adopting standard M3/M4 terminals and standard DIN rail installation, which simplify the wiring and save space.

Enhanced Security Level

- Overload Protection
CIQ series power supply offers overload protection (OLP/OCP) to prevent damages resulted from overcurrent. When the rated current is higher than 150%, the output voltage will start to drop automatically. When the power exceeds the maximum limit and reaches UVLO (under voltage point), the power supply will enter the bouncing mode. Once the overload is eliminated, the output voltage will return to its normal volume.

- Overvoltage Protection
When error occurs in the feedback device inside the power supply, the overvoltage protection (OVP) will force the power supply to enter level 2 output (30 ~ 32VDC) and the output voltage to be lower than 35V. After the error is eliminated, the output voltage will restore to 24V automatically.

- Short Circuit Protection
When short circuit occurs at the output voltage terminal, the short circuit protection will force the power supply to enter the bouncing mode until the fault is eliminated.
- **Thermal Protection**
 When the overcurrent or overvoltage persists for a period of time and causes high temperature, the thermal protection will force the power supply to enter the bouncing mode until the fault is eliminated.

- **Redundancy Mode**
 Connect the 2 power supplies, PSU1 and PSU2 as shown in the illustration below, and the power supply of bigger load will take over the entire load. The other will enter the redundancy mode.

- **Parallel Mode**
 The parallel mode is shown as the wiring method below. Each of the 2 power supplies is responsible for half of the load.
 - Step 1: Measure the voltage from A1 to GND of PSU1 and the voltage from A2 to GND of PSU2. If the voltages measured are the same, skip to step 3; otherwise, move on to step 2.
 - Step 2: Adjust the output voltage with the help of VR available on the front panel of the PSU marked as ADJUST for both PSU1 and PSU2 at the same level.
 - Step 3: Confirm the output voltages of PSU1 and PSU2 are the same at a tolerance of ±25mV.

 Note: The crow diode has to be of appropriate rating. Minimum 20Amps and 50Vrr are recommended for DRP24V60W1AZ model.

- **Output Voltage Adjustment**
 The output voltage is 24VDC, which can be adjusted from 22~26VDC on the potentiometer ADJUST on the front panel of each power supply.

 - 1. DO NOT use the power supply in the area outside the shaded portion as shown in the graph; otherwise, the internal parts may be damaged.
 - 2. If the ambient temperature is higher than 60°C, the output capacity will drop 2.5% per Kelvin increase in the temperature. If the output capacity does not meet, the power supply will enter the thermal protection mode.
 - 3. If the AC input is applied to the power supply, please contact your supplier for technical support.
 - 4. Please leave 2cm space between the power supply and other devices.

Other Features

- **Surge Load**
 The graph below illustrates a typical surge load capability of the power supply. The power supply is capable of enduring 3 seconds of a surge load of 150% of output voltage ±5% of regulated limit.

- **Dynamic Load**
 The power supply is capable of accepting a dynamic change of load from 0% to 100% with output voltage ±5% of regulated limit.

- **Start Up Current**
 The inrush current is the first surge current occurring when the AC input is applied to the power supply.
Start Up Time
The time measured from the AC input voltage is applied to it reaches 90% of the rated voltage.

Rise Time
The time measured from 10% of the rated output voltage to 90% of the rated voltage.

Hold Up Time
The time measured from the input collapse to the output voltage drops to 95%.

Ordering Information

<table>
<thead>
<tr>
<th>Series Name</th>
<th>Power Supply</th>
<th>Input</th>
<th>Output</th>
<th>Model Name</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVP</td>
<td></td>
<td>85 - 264 VAC/120 - 375 VDC</td>
<td>24V</td>
<td>DVPPS01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 - 264 VAC/120 - 375 VDC</td>
<td>24V</td>
<td>DVPPS02</td>
<td></td>
</tr>
<tr>
<td>CIQ</td>
<td>1 Phase</td>
<td>85 - 264 VAC/120 - 375 VDC</td>
<td>24V</td>
<td>DRP024V060W1AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 - 264 VAC/120 - 375 VDC</td>
<td>24V</td>
<td>DRP024V060W1AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 - 264 VAC/120 - 375 VDC</td>
<td>24V</td>
<td>DRP024V120W1AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Phase</td>
<td>320 - 575 VAC/450 - 800 VDC</td>
<td>24V</td>
<td>DRP024V060W3AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>320 - 575 VAC/450 - 800 VDC</td>
<td>24V</td>
<td>DRP024V120W3AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>320 - 575 VAC/450 - 800 VDC</td>
<td>24V</td>
<td>DRP024V240W1AA</td>
<td></td>
</tr>
<tr>
<td>PMC</td>
<td>1 Phase</td>
<td>85 - 256 VAC</td>
<td>24V</td>
<td>PMC-24V035W1AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 - 256 VAC</td>
<td>24V</td>
<td>PMC-24V050W1AA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 - 256 VAC</td>
<td>24V</td>
<td>PMC-24V100W1AA</td>
<td></td>
</tr>
</tbody>
</table>

Model Name Explanation

- DVP PS 01: 24V Output Power Supply
- DRP 024V060W 1AA: 1 - 1 Phase
- PMC 24V035W 1AA: 1 - 1 Phase

Take DRP024V060W1AA as example.